|
|
|
@@ -27,7 +27,7 @@ from mindspore.nn import ReLU |
|
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell |
|
|
|
from mindspore.ops.operations.comm_ops import AllReduce, AllGather, _AlltoAll, ReduceOp, ReduceScatter |
|
|
|
from mindspore.ops.operations.comm_ops import Broadcast, AllSwap |
|
|
|
from mindspore.ops.operations.math_ops import ReduceSum |
|
|
|
from mindspore.ops.operations.array_ops import GatherV2 |
|
|
|
import mindspore |
|
|
|
|
|
|
|
# pylint: disable=W0212 |
|
|
|
@@ -127,14 +127,15 @@ class AllSwapNet(nn.Cell): |
|
|
|
self.dense = Dense(input_channel, out_channel) |
|
|
|
self.allswap = AllSwap() |
|
|
|
self.relu = ReLU() |
|
|
|
self.reduce = ReduceSum() |
|
|
|
part_slice = batch_size / 2 |
|
|
|
self.send_size = Tensor([0, part_slice*out_channel, part_slice*out_channel], mindspore.int64) |
|
|
|
self.recv_size = Tensor([part_slice*out_channel, part_slice*out_channel, 0], mindspore.int64) |
|
|
|
self.gatherv2 = GatherV2() |
|
|
|
self.input = Tensor(np.ones([1]), mindspore.int32) |
|
|
|
def construct(self, x): |
|
|
|
x = self.dense(x) |
|
|
|
x = self.allswap(x, self.send_size, self.recv_size) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.gatherv2(x, self.input, 0) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
@@ -180,8 +181,15 @@ def test_allswap(): |
|
|
|
"""run_allswap""" |
|
|
|
context.set_context(mode=context.GRAPH_MODE) |
|
|
|
input_tensor = Tensor(np.ones((100, 20)), dtype=mindspore.float32) |
|
|
|
label_tensor = Tensor(np.ones((1, 20)), dtype=mindspore.float32) |
|
|
|
network = AllSwapNet(100, 20, 20) |
|
|
|
_executor.compile(network, input_tensor) |
|
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), |
|
|
|
learning_rate=0.1, |
|
|
|
momentum=0.9) |
|
|
|
network = WithLossCell(network, loss_fn) |
|
|
|
network = TrainOneStepCell(network, optimizer) |
|
|
|
_executor.compile(network, input_tensor, label_tensor) |
|
|
|
|
|
|
|
|
|
|
|
def run_reducescatter(op): |
|
|
|
|