|
|
|
@@ -0,0 +1,220 @@ |
|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
import mindspore as ms |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore import context |
|
|
|
from mindspore.common.api import _executor |
|
|
|
from mindspore.ops import composite as C |
|
|
|
from mindspore.ops import operations as P |
|
|
|
from tests.ut.python.ops.test_math_ops import VirtualLoss |
|
|
|
|
|
|
|
|
|
|
|
class NetWithLoss(nn.Cell): |
|
|
|
def __init__(self, network): |
|
|
|
super(NetWithLoss, self).__init__() |
|
|
|
self.loss = VirtualLoss() |
|
|
|
self.network = network |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
predict = self.network(x, y) |
|
|
|
return self.loss(predict) |
|
|
|
|
|
|
|
|
|
|
|
class GradWrap(nn.Cell): |
|
|
|
def __init__(self, network): |
|
|
|
super(GradWrap, self).__init__() |
|
|
|
self.network = network |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
return C.grad_all(self.network)(x, y) |
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell): |
|
|
|
def __init__(self, axis=0, strategy1=None, strategy2=None, shape=None, target=""): |
|
|
|
super().__init__() |
|
|
|
if shape is None: |
|
|
|
shape = [64, 64] |
|
|
|
self.gatherv2 = P.SparseGatherV2().set_strategy(strategy1).add_prim_attr("primitive_target", target) |
|
|
|
self.mul = P.Mul().set_strategy(strategy2) |
|
|
|
self.index = Tensor(np.ones(shape), dtype=ms.int32) |
|
|
|
self.axis = axis |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
out = self.gatherv2(x, self.index, self.axis) |
|
|
|
out = self.mul(out, y) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_semi_auto0(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((1, 8), (1, 1)) |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 64]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_semi_auto1(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((8, 1), (1, 1)) |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 64]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_semi_auto2(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((2, 4), (1, 1)) |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 64]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_semi_auto3(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((1, 8), (1, 1)) |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 64]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_semi_auto4(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((8, 1), (1, 1)) |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_semi_auto5(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((2, 4), (1, 1)) |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_semi_auto6(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = GradWrap(NetWithLoss(Net(0, None, strategy2))) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_semi_auto7(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = GradWrap(NetWithLoss(Net(1, None, strategy2))) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_semi_auto8(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((8,), (1, 1)) |
|
|
|
strategy2 = ((4, 2), (4, 2)) |
|
|
|
net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_auto0(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel") |
|
|
|
net = GradWrap(NetWithLoss(Net(0))) |
|
|
|
net.set_auto_parallel() |
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_auto1(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel") |
|
|
|
net = GradWrap(NetWithLoss(Net(1))) |
|
|
|
net.set_auto_parallel() |
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_cpu0(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((8, 1), (1, 1)) |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = NetWithLoss(Net(0, strategy1, strategy2, None, "CPU")) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 64]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_cpu1(): |
|
|
|
context.set_auto_parallel_context(device_num=16, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((16, 1), (1, 1)) |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = NetWithLoss(Net(0, strategy1, strategy2, None, "CPU")) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 64]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |
|
|
|
|
|
|
|
|
|
|
|
def test_gatherv2_cpu2(): |
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") |
|
|
|
strategy1 = ((1, 8), (1, 1)) |
|
|
|
strategy2 = ((4, 2, 1), (4, 2, 1)) |
|
|
|
net = NetWithLoss(Net(0, strategy1, strategy2, None, "CPU")) |
|
|
|
net.set_auto_parallel() |
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 64]), dtype=ms.float32) |
|
|
|
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) |
|
|
|
_executor.compile(net, x, y) |