| @@ -23,6 +23,9 @@ equal_op_info = AkgGpuRegOp("Equal") \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.BOOL_Default, DataType.BOOL_Default, DataType.BOOL_Default) \ | |||||
| .get_op_info() | .get_op_info() | ||||
| @@ -23,6 +23,8 @@ greater_equal_op_info = AkgGpuRegOp("GreaterEqual") \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.BOOL_Default) \ | |||||
| .get_op_info() | .get_op_info() | ||||
| @@ -23,6 +23,8 @@ lessequal_op_info = AkgGpuRegOp("LessEqual") \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.BOOL_Default) \ | |||||
| .get_op_info() | .get_op_info() | ||||
| @@ -23,6 +23,9 @@ notequal_op_info = AkgGpuRegOp("NotEqual") \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \ | ||||
| .dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.BOOL_Default) \ | |||||
| .dtype_format(DataType.BOOL_Default, DataType.BOOL_Default, DataType.BOOL_Default) \ | |||||
| .get_op_info() | .get_op_info() | ||||
| @@ -22,6 +22,10 @@ squeeze_op_info = AkgGpuRegOp("Squeeze") \ | |||||
| .attr("axis", "optional", "listInt") \ | .attr("axis", "optional", "listInt") \ | ||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | ||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | ||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default) \ | |||||
| .dtype_format(DataType.I16_Default, DataType.I16_Default) \ | |||||
| .dtype_format(DataType.U8_Default, DataType.U8_Default) \ | |||||
| .dtype_format(DataType.BOOL_Default, DataType.BOOL_Default) \ | |||||
| .get_op_info() | .get_op_info() | ||||
| @@ -22,6 +22,10 @@ squeeze_grad_op_info = AkgGpuRegOp("SqueezeGrad") \ | |||||
| .attr("x_shape", "required", "listInt") \ | .attr("x_shape", "required", "listInt") \ | ||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | ||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | ||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default) \ | |||||
| .dtype_format(DataType.I16_Default, DataType.I16_Default) \ | |||||
| .dtype_format(DataType.U8_Default, DataType.U8_Default) \ | |||||
| .dtype_format(DataType.BOOL_Default, DataType.BOOL_Default) \ | |||||
| .get_op_info() | .get_op_info() | ||||
| @@ -22,6 +22,8 @@ tile_op_info = AkgGpuRegOp("Tile") \ | |||||
| .attr("multiples", "required", "listInt") \ | .attr("multiples", "required", "listInt") \ | ||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | ||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | ||||
| .dtype_format(DataType.I32_Default, DataType.I32_Default) \ | |||||
| .dtype_format(DataType.I16_Default, DataType.I16_Default) \ | |||||
| .get_op_info() | .get_op_info() | ||||
| @@ -65,6 +65,21 @@ def test_equal(): | |||||
| y2_np = np.array([0, 1, -3]).astype(np.int32) | y2_np = np.array([0, 1, -3]).astype(np.int32) | ||||
| y2 = Tensor(y2_np) | y2 = Tensor(y2_np) | ||||
| expect2 = np.equal(x2_np, y2_np) | expect2 = np.equal(x2_np, y2_np) | ||||
| x3_np = np.array([0, 1, 3]).astype(np.int16) | |||||
| x3 = Tensor(x3_np) | |||||
| y3_np = np.array([0, 1, -3]).astype(np.int16) | |||||
| y3 = Tensor(y3_np) | |||||
| expect3 = np.equal(x3_np, y3_np) | |||||
| x4_np = np.array([0, 1, 4]).astype(np.uint8) | |||||
| x4 = Tensor(x4_np) | |||||
| y4_np = np.array([0, 1, 3]).astype(np.uint8) | |||||
| y4 = Tensor(y4_np) | |||||
| expect4 = np.equal(x4_np, y4_np) | |||||
| x5_np = np.array([True, False, True]).astype(bool) | |||||
| x5 = Tensor(x5_np) | |||||
| y5_np = np.array([True, False, False]).astype(bool) | |||||
| y5 = Tensor(y5_np) | |||||
| expect5 = np.equal(x5_np, y5_np) | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | ||||
| equal = NetEqual() | equal = NetEqual() | ||||
| @@ -77,6 +92,17 @@ def test_equal(): | |||||
| output2 = equal(x2, y2) | output2 = equal(x2, y2) | ||||
| assert np.all(output2.asnumpy() == expect2) | assert np.all(output2.asnumpy() == expect2) | ||||
| assert output2.shape == expect2.shape | assert output2.shape == expect2.shape | ||||
| output3 = equal(x3, y3) | |||||
| assert np.all(output3.asnumpy() == expect3) | |||||
| assert output3.shape == expect3.shape | |||||
| output4 = equal(x4, y4) | |||||
| assert np.all(output4.asnumpy() == expect4) | |||||
| assert output4.shape == expect4.shape | |||||
| output5 = equal(x5, y5) | |||||
| assert np.all(output5.asnumpy() == expect5) | |||||
| assert output5.shape == expect5.shape | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | ||||
| equal = NetEqual() | equal = NetEqual() | ||||
| @@ -89,6 +115,15 @@ def test_equal(): | |||||
| output2 = equal(x2, y2) | output2 = equal(x2, y2) | ||||
| assert np.all(output2.asnumpy() == expect2) | assert np.all(output2.asnumpy() == expect2) | ||||
| assert output2.shape == expect2.shape | assert output2.shape == expect2.shape | ||||
| output3 = equal(x3, y3) | |||||
| assert np.all(output3.asnumpy() == expect3) | |||||
| assert output3.shape == expect3.shape | |||||
| output4 = equal(x4, y4) | |||||
| assert np.all(output4.asnumpy() == expect4) | |||||
| assert output4.shape == expect4.shape | |||||
| output5 = equal(x5, y5) | |||||
| assert np.all(output5.asnumpy() == expect5) | |||||
| assert output5.shape == expect5.shape | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @@ -98,18 +133,45 @@ def test_notequal(): | |||||
| x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) | x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) | ||||
| y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) | y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) | ||||
| expect0 = np.array([[True, True], [False, True]]) | expect0 = np.array([[True, True], [False, True]]) | ||||
| x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16)) | |||||
| y1 = Tensor(np.array([[1, 2]]).astype(np.int16)) | |||||
| expect1 = np.array([[True, True], [False, True]]) | |||||
| x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8)) | |||||
| y2 = Tensor(np.array([[1, 2]]).astype(np.uint8)) | |||||
| expect2 = np.array([[True, True], [False, False]]) | |||||
| x3 = Tensor(np.array([[False, True], [True, False]]).astype(bool)) | |||||
| y3 = Tensor(np.array([[True, False]]).astype(bool)) | |||||
| expect3 = np.array([[True, True], [False, False]]) | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | ||||
| notequal = NetNotEqual() | notequal = NetNotEqual() | ||||
| output0 = notequal(x0, y0) | output0 = notequal(x0, y0) | ||||
| assert np.all(output0.asnumpy() == expect0) | assert np.all(output0.asnumpy() == expect0) | ||||
| assert output0.shape == expect0.shape | assert output0.shape == expect0.shape | ||||
| output1 = notequal(x1, y1) | |||||
| assert np.all(output1.asnumpy() == expect1) | |||||
| assert output1.shape == expect1.shape | |||||
| output2 = notequal(x2, y2) | |||||
| assert np.all(output2.asnumpy() == expect2) | |||||
| assert output2.shape == expect2.shape | |||||
| output3 = notequal(x3, y3) | |||||
| assert np.all(output3.asnumpy() == expect3) | |||||
| assert output3.shape == expect3.shape | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | ||||
| notequal = NetNotEqual() | notequal = NetNotEqual() | ||||
| output0 = notequal(x0, y0) | output0 = notequal(x0, y0) | ||||
| assert np.all(output0.asnumpy() == expect0) | assert np.all(output0.asnumpy() == expect0) | ||||
| assert output0.shape == expect0.shape | assert output0.shape == expect0.shape | ||||
| output1 = notequal(x1, y1) | |||||
| assert np.all(output1.asnumpy() == expect1) | |||||
| assert output1.shape == expect1.shape | |||||
| output2 = notequal(x2, y2) | |||||
| assert np.all(output2.asnumpy() == expect2) | |||||
| assert output2.shape == expect2.shape | |||||
| output3 = notequal(x3, y3) | |||||
| assert np.all(output3.asnumpy() == expect3) | |||||
| assert output3.shape == expect3.shape | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @@ -119,15 +181,33 @@ def test_greaterqual(): | |||||
| x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) | x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) | ||||
| y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) | y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) | ||||
| expect0 = np.array([[True, False], [True, False]]) | expect0 = np.array([[True, False], [True, False]]) | ||||
| x1 = Tensor(np.array([[2, 1], [1, 1]]).astype(np.int16)) | |||||
| y1 = Tensor(np.array([[1, 2]]).astype(np.int16)) | |||||
| expect1 = np.array([[True, False], [True, False]]) | |||||
| x2 = Tensor(np.array([[2, 1], [1, 2]]).astype(np.uint8)) | |||||
| y2 = Tensor(np.array([[1, 2]]).astype(np.uint8)) | |||||
| expect2 = np.array([[True, False], [True, True]]) | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | ||||
| gequal = NetGreaterEqual() | gequal = NetGreaterEqual() | ||||
| output0 = gequal(x0, y0) | output0 = gequal(x0, y0) | ||||
| assert np.all(output0.asnumpy() == expect0) | assert np.all(output0.asnumpy() == expect0) | ||||
| assert output0.shape == expect0.shape | assert output0.shape == expect0.shape | ||||
| output1 = gequal(x1, y1) | |||||
| assert np.all(output1.asnumpy() == expect1) | |||||
| assert output1.shape == expect1.shape | |||||
| output2 = gequal(x2, y2) | |||||
| assert np.all(output2.asnumpy() == expect2) | |||||
| assert output2.shape == expect2.shape | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | ||||
| gequal = NetGreaterEqual() | gequal = NetGreaterEqual() | ||||
| output0 = gequal(x0, y0) | output0 = gequal(x0, y0) | ||||
| assert np.all(output0.asnumpy() == expect0) | assert np.all(output0.asnumpy() == expect0) | ||||
| assert output0.shape == expect0.shape | assert output0.shape == expect0.shape | ||||
| output1 = gequal(x1, y1) | |||||
| assert np.all(output1.asnumpy() == expect1) | |||||
| assert output1.shape == expect1.shape | |||||
| output2 = gequal(x2, y2) | |||||
| assert np.all(output2.asnumpy() == expect2) | |||||
| assert output2.shape == expect2.shape | |||||
| @@ -38,12 +38,27 @@ def test_lessequal(): | |||||
| x = Tensor(np.array([[1, 2, 3]]).astype(np.float32)) | x = Tensor(np.array([[1, 2, 3]]).astype(np.float32)) | ||||
| y = Tensor(np.array([[2]]).astype(np.float32)) | y = Tensor(np.array([[2]]).astype(np.float32)) | ||||
| expect = [[True, True, False]] | expect = [[True, True, False]] | ||||
| x1 = Tensor(np.array([[1, 2, 3]]).astype(np.int16)) | |||||
| y1 = Tensor(np.array([[2]]).astype(np.int16)) | |||||
| expect = [[True, True, False]] | |||||
| x2 = Tensor(np.array([[1, 2, 3]]).astype(np.uint8)) | |||||
| y2 = Tensor(np.array([[2]]).astype(np.uint8)) | |||||
| expect = [[True, True, False]] | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | ||||
| lessequal = Net() | lessequal = Net() | ||||
| output = lessequal(x, y) | output = lessequal(x, y) | ||||
| assert np.all(output.asnumpy() == expect) | assert np.all(output.asnumpy() == expect) | ||||
| output = lessequal(x1, y1) | |||||
| assert np.all(output.asnumpy() == expect) | |||||
| output = lessequal(x2, y2) | |||||
| assert np.all(output.asnumpy() == expect) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | ||||
| lessequal = Net() | lessequal = Net() | ||||
| output = lessequal(x, y) | output = lessequal(x, y) | ||||
| assert np.all(output.asnumpy() == expect) | assert np.all(output.asnumpy() == expect) | ||||
| output = lessequal(x1, y1) | |||||
| assert np.all(output.asnumpy() == expect) | |||||
| output = lessequal(x2, y2) | |||||
| assert np.all(output.asnumpy() == expect) | |||||
| @@ -0,0 +1,79 @@ | |||||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self): | |||||
| super(Net, self).__init__() | |||||
| self.squeeze = P.Squeeze() | |||||
| def construct(self, tensor): | |||||
| return self.squeeze(tensor) | |||||
| def test_net_bool(): | |||||
| x = np.random.randn(1, 16, 1, 1).astype(np.bool) | |||||
| net = Net() | |||||
| output = net(Tensor(x)) | |||||
| print(output.asnumpy()) | |||||
| assert np.all(output.asnumpy() == x.squeeze()) | |||||
| def test_net_uint8(): | |||||
| x = np.random.randn(1, 16, 1, 1).astype(np.uint8) | |||||
| net = Net() | |||||
| output = net(Tensor(x)) | |||||
| print(output.asnumpy()) | |||||
| assert np.all(output.asnumpy() == x.squeeze()) | |||||
| def test_net_int16(): | |||||
| x = np.random.randn(1, 16, 1, 1).astype(np.int16) | |||||
| net = Net() | |||||
| output = net(Tensor(x)) | |||||
| print(output.asnumpy()) | |||||
| assert np.all(output.asnumpy() == x.squeeze()) | |||||
| def test_net_int32(): | |||||
| x = np.random.randn(1, 16, 1, 1).astype(np.int32) | |||||
| net = Net() | |||||
| output = net(Tensor(x)) | |||||
| print(output.asnumpy()) | |||||
| assert np.all(output.asnumpy() == x.squeeze()) | |||||
| def test_net_float16(): | |||||
| x = np.random.randn(1, 16, 1, 1).astype(np.float16) | |||||
| net = Net() | |||||
| output = net(Tensor(x)) | |||||
| print(output.asnumpy()) | |||||
| assert np.all(output.asnumpy() == x.squeeze()) | |||||
| def test_net_float32(): | |||||
| x = np.random.randn(1, 16, 1, 1).astype(np.float32) | |||||
| net = Net() | |||||
| output = net(Tensor(x)) | |||||
| print(output.asnumpy()) | |||||
| assert np.all(output.asnumpy() == x.squeeze()) | |||||
| @@ -33,6 +33,27 @@ mul1 = (2, 2, 2) | |||||
| input_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.float32) | input_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.float32) | ||||
| mul2 = (1, 1, 1) | mul2 = (1, 1, 1) | ||||
| input_32_x0 = np.arange(2).reshape((2, 1, 1)).astype(np.int32) | |||||
| mul_32_0 = (8, 1, 1) | |||||
| input_32_x1 = np.arange(32).reshape((2, 4, 4)).astype(np.int32) | |||||
| mul_32_1 = (2, 2, 2) | |||||
| input_32_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.int32) | |||||
| mul_32_2 = (1, 1, 1) | |||||
| input_16_x0 = np.arange(2).reshape((2, 1, 1)).astype(np.int16) | |||||
| mul_16_0 = (8, 1, 1) | |||||
| input_16_x1 = np.arange(32).reshape((2, 4, 4)).astype(np.int16) | |||||
| mul_16_1 = (2, 2, 2) | |||||
| input_16_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.int16) | |||||
| mul_16_2 = (1, 1, 1) | |||||
| input_8_x0 = np.arange(2).reshape((2, 1, 1)).astype(np.uint8) | |||||
| mul_8_0 = (8, 1, 1) | |||||
| input_8_x1 = np.arange(32).reshape((2, 4, 4)).astype(np.int8) | |||||
| mul_8_1 = (2, 2, 2) | |||||
| input_8_x2 = np.arange(1).reshape((1, 1, 1)).astype(np.uint8) | |||||
| mul_8_2 = (1, 1, 1) | |||||
| class Net(Cell): | class Net(Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| @@ -54,6 +75,46 @@ class Net(Cell): | |||||
| return output | return output | ||||
| class Net32(Cell): | |||||
| def __init__(self): | |||||
| super(Net32, self).__init__() | |||||
| self.Tile = Tile() | |||||
| self.input_32_x0 = Parameter(initializer(Tensor(input_32_x0), input_32_x0.shape), name='x0') | |||||
| self.mul_32_0 = mul_32_0 | |||||
| self.input_32_x1 = Parameter(initializer(Tensor(input_32_x1), input_32_x1.shape), name='x1') | |||||
| self.mul_32_1 = mul_32_1 | |||||
| self.input_32_x2 = Parameter(initializer(Tensor(input_32_x2), input_32_x2.shape), name='x2') | |||||
| self.mul_32_2 = mul_32_2 | |||||
| @ms_function | |||||
| def construct(self): | |||||
| output = (self.Tile(self.input_32_x0, self.mul_32_0), | |||||
| self.Tile(self.input_32_x1, self.mul_32_1), | |||||
| self.Tile(self.input_32_x2, self.mul_32_2)) | |||||
| return output | |||||
| class Net16(Cell): | |||||
| def __init__(self): | |||||
| super(Net16, self).__init__() | |||||
| self.Tile = Tile() | |||||
| self.input_16_x0 = Parameter(initializer(Tensor(input_16_x0), input_16_x0.shape), name='x0') | |||||
| self.mul_16_0 = mul_16_0 | |||||
| self.input_16_x1 = Parameter(initializer(Tensor(input_16_x1), input_16_x1.shape), name='x1') | |||||
| self.mul_16_1 = mul_16_1 | |||||
| self.input_16_x2 = Parameter(initializer(Tensor(input_16_x2), input_16_x2.shape), name='x2') | |||||
| self.mul_16_2 = mul_16_2 | |||||
| @ms_function | |||||
| def construct(self): | |||||
| output = (self.Tile(self.input_16_x0, self.mul_16_0), | |||||
| self.Tile(self.input_16_x1, self.mul_16_1), | |||||
| self.Tile(self.input_16_x2, self.mul_16_2)) | |||||
| return output | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @pytest.mark.platform_x86_gpu_training | @pytest.mark.platform_x86_gpu_training | ||||
| @pytest.mark.env_onecard | @pytest.mark.env_onecard | ||||
| @@ -78,3 +139,55 @@ def test_tile(): | |||||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | error2 = np.ones(shape=expect2.shape) * 1.0e-5 | ||||
| assert np.all(diff2 < error2) | assert np.all(diff2 < error2) | ||||
| assert output[2].shape == expect2.shape | assert output[2].shape == expect2.shape | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_tile_32(): | |||||
| net = Net32() | |||||
| output = net() | |||||
| expect0 = np.tile(input_32_x0, mul_32_0) | |||||
| diff0 = output[0].asnumpy() - expect0 | |||||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||||
| assert np.all(diff0 < error0) | |||||
| assert output[0].shape == expect0.shape | |||||
| expect1 = np.tile(input_32_x1, mul_32_1) | |||||
| diff1 = output[1].asnumpy() - expect1 | |||||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||||
| assert np.all(diff1 < error1) | |||||
| assert output[1].shape == expect1.shape | |||||
| expect2 = np.tile(input_32_x2, mul_32_2) | |||||
| diff2 = output[2].asnumpy() - expect2 | |||||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||||
| assert np.all(diff2 < error2) | |||||
| assert output[2].shape == expect2.shape | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_tile_16(): | |||||
| net = Net16() | |||||
| output = net() | |||||
| expect0 = np.tile(input_16_x0, mul_16_0) | |||||
| diff0 = output[0].asnumpy() - expect0 | |||||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | |||||
| assert np.all(diff0 < error0) | |||||
| assert output[0].shape == expect0.shape | |||||
| expect1 = np.tile(input_16_x1, mul_16_1) | |||||
| diff1 = output[1].asnumpy() - expect1 | |||||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | |||||
| assert np.all(diff1 < error1) | |||||
| assert output[1].shape == expect1.shape | |||||
| expect2 = np.tile(input_16_x2, mul_16_2) | |||||
| diff2 = output[2].asnumpy() - expect2 | |||||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | |||||
| assert np.all(diff2 < error2) | |||||
| assert output[2].shape == expect2.shape | |||||