From: @lijiaqi0612 Reviewed-by: @kisnwang,@zh_qh Signed-off-by: @zh_qhpull/14393/MERGE
| @@ -452,7 +452,7 @@ class DiceLoss(_Loss): | |||||
| single_dice_coeff = (2 * intersection) / (unionset + self.smooth) | single_dice_coeff = (2 * intersection) / (unionset + self.smooth) | ||||
| dice_loss = 1 - single_dice_coeff | dice_loss = 1 - single_dice_coeff | ||||
| return dice_loss.mean() | |||||
| return dice_loss | |||||
| @constexpr | @constexpr | ||||
| @@ -1078,7 +1078,7 @@ class FocalLoss(_Loss): | |||||
| >>> focalloss = nn.FocalLoss(weight=Tensor([1, 2]), gamma=2.0, reduction='mean') | >>> focalloss = nn.FocalLoss(weight=Tensor([1, 2]), gamma=2.0, reduction='mean') | ||||
| >>> output = focalloss(predict, target) | >>> output = focalloss(predict, target) | ||||
| >>> print(output) | >>> print(output) | ||||
| 1.6610543 | |||||
| 0.12516622 | |||||
| """ | """ | ||||
| def __init__(self, weight=None, gamma=2.0, reduction='mean'): | def __init__(self, weight=None, gamma=2.0, reduction='mean'): | ||||
| @@ -38,7 +38,7 @@ class BleuScore(Metric): | |||||
| >>> metric.clear() | >>> metric.clear() | ||||
| >>> metric.update(candidate_corpus, reference_corpus) | >>> metric.update(candidate_corpus, reference_corpus) | ||||
| >>> bleu_score = metric.eval() | >>> bleu_score = metric.eval() | ||||
| >>> print(output) | |||||
| >>> print(bleu_score) | |||||
| 0.5946035575013605 | 0.5946035575013605 | ||||
| """ | """ | ||||
| def __init__(self, n_gram=4, smooth=False): | def __init__(self, n_gram=4, smooth=False): | ||||
| @@ -182,7 +182,7 @@ class ConfusionMatrixMetric(Metric): | |||||
| >>> y = Tensor(np.array([[[0], [1]], [[1], [0]]])) | >>> y = Tensor(np.array([[[0], [1]], [[1], [0]]])) | ||||
| >>> avg_output = metric.eval() | >>> avg_output = metric.eval() | ||||
| >>> print(avg_output) | >>> print(avg_output) | ||||
| [0.75] | |||||
| [0.5] | |||||
| """ | """ | ||||
| def __init__(self, | def __init__(self, | ||||
| skip_channel=True, | skip_channel=True, | ||||