| @@ -0,0 +1,58 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "unary_op_grad_impl.cuh" | |||||
| template <typename T> | |||||
| __global__ void SqrtGradKernel(const T *input, const T *dout, T *output, const size_t count) { | |||||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||||
| float input_f = static_cast<float>(input[i]); | |||||
| float dout_f = static_cast<float>(dout[i]); | |||||
| float res_vmul = dout_f / (2.0 * input_f); | |||||
| output[i] = static_cast<T>(res_vmul); | |||||
| } | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| __global__ void RsqrtGradKernel(const T *input, const T *dout, T *output, const size_t count) { | |||||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) { | |||||
| float input_f = static_cast<float>(input[i]); | |||||
| float dout_f = static_cast<float>(dout[i]); | |||||
| float res_vmul = input_f * input_f * input_f; | |||||
| res_vmul = -0.5 * res_vmul * dout_f; | |||||
| output[i] = static_cast<T>(res_vmul); | |||||
| } | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| void SqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream) { | |||||
| SqrtGradKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, dout, output, count); | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| void RsqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream) { | |||||
| RsqrtGradKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(input, dout, output, count); | |||||
| return; | |||||
| } | |||||
| template void SqrtGrad<float>(const float *input, const float *dout, float *output, const size_t count, | |||||
| cudaStream_t cuda_stream); | |||||
| template void RsqrtGrad<float>(const float *input, const float *dout, float *output, const size_t count, | |||||
| cudaStream_t cuda_stream); | |||||
| template void SqrtGrad<half>(const half *input, const half *dout, half *output, const size_t count, | |||||
| cudaStream_t cuda_stream); | |||||
| template void RsqrtGrad<half>(const half *input, const half *dout, half *output, const size_t count, | |||||
| cudaStream_t cuda_stream); | |||||
| @@ -0,0 +1,26 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOP_GRAD_IMPL_H_ | |||||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOP_GRAD_IMPL_H_ | |||||
| #include "runtime/device/gpu/cuda_common.h" | |||||
| template <typename T> | |||||
| void SqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream); | |||||
| template <typename T> | |||||
| void RsqrtGrad(const T *input, const T *dout, T *output, const size_t count, cudaStream_t cuda_stream); | |||||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_UNARYOP_GRAD_IMPL_H_ | |||||
| @@ -0,0 +1,38 @@ | |||||
| /** | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/math/unary_op_grad_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| SqrtGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||||
| UnaryGradOpGpuKernel, float) | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| SqrtGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||||
| UnaryGradOpGpuKernel, half) | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| RsqrtGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||||
| UnaryGradOpGpuKernel, float) | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| RsqrtGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||||
| UnaryGradOpGpuKernel, half) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,142 @@ | |||||
| /** | |||||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_UNARYOP_GRAD_GPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_UNARYOP_GRAD_GPU_KERNEL_H_ | |||||
| #include <cuda_runtime_api.h> | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include <map> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/unary_op_grad_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| enum UnaryGradOptype { UNARY_OP_SQRT_GRAD = 0, UNARY_OP_RSQRT_GRAD, UNARY_OP_GRAD_INVALID_TYPE = 255 }; | |||||
| static const std::map<std::string, UnaryGradOptype> kUnaryGradOpTypeMap = {{"SqrtGrad", UNARY_OP_SQRT_GRAD}, | |||||
| {"RsqrtGrad", UNARY_OP_RSQRT_GRAD}}; | |||||
| template <typename T> | |||||
| class UnaryGradOpGpuKernel : public GpuKernel { | |||||
| public: | |||||
| UnaryGradOpGpuKernel() | |||||
| : unary_grad_op_type_(UNARY_OP_GRAD_INVALID_TYPE), | |||||
| input_size_(sizeof(T)), | |||||
| dx_size_(sizeof(T)), | |||||
| output_size_(sizeof(T)), | |||||
| workspace_size_(0), | |||||
| is_null_input_(false) {} | |||||
| ~UnaryGradOpGpuKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| VARIABLE_NOT_USED(workspace); | |||||
| T *input_x_addr = GetDeviceAddress<T>(inputs, 0); | |||||
| T *input_dx_addr = GetDeviceAddress<T>(inputs, 1); | |||||
| T *output_y_addr = GetDeviceAddress<T>(outputs, 0); | |||||
| switch (unary_grad_op_type_) { | |||||
| case UNARY_OP_SQRT_GRAD: { | |||||
| SqrtGrad(input_x_addr, input_dx_addr, output_y_addr, inputs[0]->size / sizeof(T), | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| break; | |||||
| } | |||||
| case UNARY_OP_RSQRT_GRAD: { | |||||
| RsqrtGrad(input_x_addr, input_dx_addr, output_y_addr, inputs[0]->size / sizeof(T), | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| break; | |||||
| } | |||||
| default: { | |||||
| MS_LOG(EXCEPTION) << "Unary grad operation " << unary_grad_op_type_ << " is not supported."; | |||||
| } | |||||
| } | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node); | |||||
| auto iter = kUnaryGradOpTypeMap.find(kernel_name); | |||||
| if (iter == kUnaryGradOpTypeMap.end()) { | |||||
| MS_LOG(EXCEPTION) << "Unary grad operation " << kernel_name << " is not supported."; | |||||
| } else { | |||||
| unary_grad_op_type_ = iter->second; | |||||
| } | |||||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_num != 2) { | |||||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but unary grad op needs 2 inputs."; | |||||
| return false; | |||||
| } | |||||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||||
| if (output_num != 1) { | |||||
| MS_LOG(ERROR) << "Output number is " << output_num << ", but unary grad op needs 1 output."; | |||||
| return false; | |||||
| } | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| is_null_input_ = CHECK_NULL_INPUT(input_shape); | |||||
| if (is_null_input_) { | |||||
| MS_LOG(WARNING) << "UnaryGradOpGpuKernel input 0 is null"; | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| input_size_ *= input_shape[i]; | |||||
| } | |||||
| auto dx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||||
| is_null_input_ = CHECK_NULL_INPUT(dx_shape); | |||||
| if (is_null_input_) { | |||||
| MS_LOG(WARNING) << "UnaryGradOpGpuKernel input 1 is null"; | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| for (size_t i = 0; i < dx_shape.size(); i++) { | |||||
| dx_size_ *= dx_shape[i]; | |||||
| } | |||||
| if (input_size_ != dx_size_) { | |||||
| MS_LOG(WARNING) << "UnaryGradOpGpuKernel inputs should be same, but got " << input_size_ << " and " << dx_size_; | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| output_size_ = input_size_; | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_); | |||||
| input_size_list_.push_back(dx_size_); | |||||
| output_size_list_.push_back(output_size_); | |||||
| } | |||||
| private: | |||||
| UnaryGradOptype unary_grad_op_type_; | |||||
| size_t input_size_; | |||||
| size_t dx_size_; | |||||
| size_t output_size_; | |||||
| size_t workspace_size_; | |||||
| bool is_null_input_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_UNARYOP_GRAD_GPU_KERNEL_H_ | |||||
| @@ -0,0 +1,53 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops.operations import _grad_ops as G | |||||
| class NetRsqrtGrad(nn.Cell): | |||||
| def __init__(self): | |||||
| super(NetRsqrtGrad, self).__init__() | |||||
| self.rsqrt_grad = G.RsqrtGrad() | |||||
| def construct(self, x, dx): | |||||
| return self.rsqrt_grad(x, dx) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_rsqrt_grad(): | |||||
| x = Tensor(np.array([[[[-1, 1, 10], | |||||
| [5.9, 6.1, 6], | |||||
| [10, 1, -1]]]]).astype(np.float32)) | |||||
| dx = Tensor(np.array([[[[1, 1, 1], | |||||
| [2, 2, 2], | |||||
| [3, 3, 3]]]]).astype(np.float32)) | |||||
| expect = np.array([[[[0.5, -0.5, -500,], | |||||
| [-205.37901, -226.98099, -216], | |||||
| [-1500, -1.5, 1.5,]]]]).astype(np.float32) | |||||
| error = np.ones(shape=[3, 3]) * 1.0e-6 | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| rsqrt_grad = NetRsqrtGrad() | |||||
| output = rsqrt_grad(x, dx) | |||||
| diff = output.asnumpy() - expect | |||||
| assert np.all(np.abs(diff) < error) | |||||
| @@ -0,0 +1,53 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops.operations import _grad_ops as G | |||||
| class NetSqrtGrad(nn.Cell): | |||||
| def __init__(self): | |||||
| super(NetSqrtGrad, self).__init__() | |||||
| self.sqrt_grad = G.SqrtGrad() | |||||
| def construct(self, x, dx): | |||||
| return self.sqrt_grad(x, dx) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_sqrt_grad(): | |||||
| x = Tensor(np.array([[[[-1, 1, 10], | |||||
| [5.9, 6.1, 6], | |||||
| [10, 1, -1]]]]).astype(np.float32)) | |||||
| dx = Tensor(np.array([[[[1, 1, 1], | |||||
| [2, 2, 2], | |||||
| [3, 3, 3]]]]).astype(np.float32)) | |||||
| expect = np.array([[[[-0.5, 0.5, 0.05,], | |||||
| [0.16949153, 0.16393442, 0.16666667,], | |||||
| [0.15, 1.5, -1.5,]]]]).astype(np.float32) | |||||
| error = np.ones(shape=[3, 3]) * 1.0e-6 | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| sqrt_grad = NetSqrtGrad() | |||||
| output = sqrt_grad(x, dx) | |||||
| diff = output.asnumpy() - expect | |||||
| assert np.all(np.abs(diff) < error) | |||||