Merge pull request !4670 from songhonglei413/roitags/v0.7.0-beta
| @@ -19,6 +19,8 @@ | |||||
| #include "src/kernel_registry.h" | #include "src/kernel_registry.h" | ||||
| #include "include/errorcode.h" | #include "include/errorcode.h" | ||||
| #include "src/runtime/runtime_api.h" | #include "src/runtime/runtime_api.h" | ||||
| #include "src/runtime/kernel/arm/nnacl/batchnorm_parameter.h" | |||||
| #include "src/runtime/kernel/arm/nnacl/fp32/batchnorm.h" | |||||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | using mindspore::kernel::KERNEL_ARCH::kCPU; | ||||
| using mindspore::lite::KernelRegistrar; | using mindspore::lite::KernelRegistrar; | ||||
| @@ -21,6 +21,7 @@ | |||||
| #include "src/lite_kernel.h" | #include "src/lite_kernel.h" | ||||
| #include "include/context.h" | #include "include/context.h" | ||||
| #include "src/runtime/kernel/arm/nnacl/fp32/batchnorm.h" | #include "src/runtime/kernel/arm/nnacl/fp32/batchnorm.h" | ||||
| #include "src/runtime/kernel/arm/nnacl/batchnorm_parameter.h" | |||||
| using mindspore::lite::Context; | using mindspore::lite::Context; | ||||
| @@ -19,6 +19,8 @@ | |||||
| #include "src/kernel_registry.h" | #include "src/kernel_registry.h" | ||||
| #include "include/errorcode.h" | #include "include/errorcode.h" | ||||
| #include "src/runtime/runtime_api.h" | #include "src/runtime/runtime_api.h" | ||||
| #include "src/runtime/kernel/arm/nnacl/batchnorm_parameter.h" | |||||
| #include "src/runtime/kernel/arm/nnacl/fp32/batchnorm.h" | |||||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | using mindspore::kernel::KERNEL_ARCH::kCPU; | ||||
| using mindspore::lite::KernelRegistrar; | using mindspore::lite::KernelRegistrar; | ||||
| @@ -19,7 +19,7 @@ | |||||
| #include <vector> | #include <vector> | ||||
| #include "src/lite_kernel.h" | #include "src/lite_kernel.h" | ||||
| #include "src/runtime/kernel/arm/nnacl/fp32/batchnorm.h" | |||||
| #include "src/runtime/kernel/arm/nnacl/batchnorm_parameter.h" | |||||
| namespace mindspore::kernel { | namespace mindspore::kernel { | ||||
| class FusedBatchnormCPUKernel : public LiteKernel { | class FusedBatchnormCPUKernel : public LiteKernel { | ||||
| @@ -0,0 +1,168 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "src/runtime/kernel/arm/int8/batchnorm_int8.h" | |||||
| #include <math.h> | |||||
| #include "schema/model_generated.h" | |||||
| #include "src/kernel_registry.h" | |||||
| #include "include/errorcode.h" | |||||
| #include "src/runtime/runtime_api.h" | |||||
| #include "src/runtime/kernel/arm/nnacl/batchnorm_parameter.h" | |||||
| using mindspore::kernel::KERNEL_ARCH::kCPU; | |||||
| using mindspore::lite::KernelRegistrar; | |||||
| using mindspore::lite::RET_ERROR; | |||||
| using mindspore::lite::RET_OK; | |||||
| using mindspore::schema::PrimitiveType_BatchNorm; | |||||
| namespace mindspore::kernel { | |||||
| BatchnormInt8CPUKernel::~BatchnormInt8CPUKernel() { | |||||
| if (alpha_addr_ != nullptr) { | |||||
| free(alpha_addr_); | |||||
| alpha_addr_ = nullptr; | |||||
| } | |||||
| if (beta_addr_ != nullptr) { | |||||
| free(beta_addr_); | |||||
| beta_addr_ = nullptr; | |||||
| } | |||||
| } | |||||
| int BatchnormInt8CPUKernel::InitConstTensor() { | |||||
| auto input = in_tensors_[0]; | |||||
| auto mean = in_tensors_[1]; | |||||
| auto variance = in_tensors_[2]; | |||||
| auto output = out_tensors_[0]; | |||||
| auto mean_ptr = reinterpret_cast<int8_t *>(mean->Data()); | |||||
| auto var_ptr = reinterpret_cast<int8_t *>(variance->Data()); | |||||
| alpha_addr_ = reinterpret_cast<float *>(malloc(mean->ElementsNum() * sizeof(float))); | |||||
| if (alpha_addr_ == nullptr) { | |||||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||||
| return RET_ERROR; | |||||
| } | |||||
| beta_addr_ = reinterpret_cast<float *>(malloc(variance->ElementsNum() * sizeof(float))); | |||||
| if (beta_addr_ == nullptr) { | |||||
| MS_LOG(ERROR) << "Malloc buffer failed."; | |||||
| return RET_ERROR; | |||||
| } | |||||
| // compute alpha, beta; | |||||
| // 0. tmp = (S4 * Sqrt(e + S3 * (q3 - Z3))); | |||||
| // 1. A = S1 / tmp; | |||||
| // 2. B = Z4 - (A1 * Z1) -((S2 * (q2 - Z2)) / tmp; | |||||
| auto eps = batchnorm_param_->epsilon_; | |||||
| auto zp_in = input->GetQuantParams().front().zeroPoint; | |||||
| auto zp_mean = mean->GetQuantParams().front().zeroPoint; | |||||
| auto zp_var = variance->GetQuantParams().front().zeroPoint; | |||||
| auto zp_out = output->GetQuantParams().front().zeroPoint; | |||||
| auto s_in = input->GetQuantParams().front().scale; | |||||
| auto s_mean = mean->GetQuantParams().front().scale; | |||||
| auto s_var = variance->GetQuantParams().front().scale; | |||||
| auto s_out = output->GetQuantParams().front().scale; | |||||
| for (int i = 0; i < batchnorm_param_->channel_; ++i) { | |||||
| float tmp = s_out * sqrt(eps + s_var * (var_ptr[i] - zp_var)); | |||||
| float tmp_a = s_in / tmp; | |||||
| float tmp_b = zp_out - tmp_a * zp_in - (s_mean * (mean_ptr[i] - zp_mean)) / tmp; | |||||
| alpha_addr_[i] = tmp_a; | |||||
| beta_addr_[i] = tmp_b; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| int BatchnormInt8CPUKernel::Init() { | |||||
| auto input_shapes = in_tensors_[0]->shape(); | |||||
| auto n_dim = input_shapes.size(); | |||||
| batchnorm_param_->channel_ = input_shapes[n_dim - 1]; | |||||
| batchnorm_param_->unit_ = 1; | |||||
| for (int i = 0; i < n_dim - 1; i++) { | |||||
| batchnorm_param_->unit_ *= input_shapes[i]; | |||||
| } | |||||
| batchnorm_param_->op_parameter_.thread_num_ = | |||||
| MSMIN(batchnorm_param_->op_parameter_.thread_num_, batchnorm_param_->channel_); | |||||
| auto ret = InitConstTensor(); | |||||
| if (ret != 0) { | |||||
| MS_LOG(ERROR) << "Batchnorm fp32 InitConstTensor failed."; | |||||
| return RET_ERROR; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| int BatchnormInt8CPUKernel::ReSize() { | |||||
| auto input_shapes = in_tensors_[0]->shape(); | |||||
| batchnorm_param_->unit_ = 1; | |||||
| for (int i = 0; i < input_shapes.size() - 1; i++) { | |||||
| batchnorm_param_->unit_ *= input_shapes[i]; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| int BatchnormInt8CPUKernel::DoExecute(int task_id) { | |||||
| BatchNormInt8(out_addr_, in_addr_, alpha_addr_, beta_addr_, task_id, batchnorm_param_); | |||||
| return RET_OK; | |||||
| } | |||||
| int BatchNormInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) { | |||||
| auto g_kernel = reinterpret_cast<BatchnormInt8CPUKernel *>(cdata); | |||||
| auto ret = g_kernel->DoExecute(task_id); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "BatchnormRun error task_id[" << task_id << "] error_code[" << ret << "]"; | |||||
| return ret; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| int BatchnormInt8CPUKernel::Run() { | |||||
| auto prepare_ret = Prepare(); | |||||
| if (prepare_ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "Prepare fail! Ret error code: " << prepare_ret; | |||||
| return prepare_ret; | |||||
| } | |||||
| in_addr_ = reinterpret_cast<int8_t *>(in_tensors_.at(0)->Data()); | |||||
| out_addr_ = reinterpret_cast<int8_t *>(out_tensors_.at(0)->Data()); | |||||
| int ret = LiteBackendParallelLaunch(BatchNormInt8Run, this, batchnorm_param_->op_parameter_.thread_num_); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "BatchnormRun error error_code[" << ret << "]"; | |||||
| return ret; | |||||
| } | |||||
| return RET_OK; | |||||
| } | |||||
| kernel::LiteKernel *CpuBatchnormInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs, | |||||
| const std::vector<lite::tensor::Tensor *> &outputs, | |||||
| OpParameter *opParameter, const lite::Context *ctx, | |||||
| const kernel::KernelKey &desc, | |||||
| const mindspore::lite::PrimitiveC *primitive) { | |||||
| MS_ASSERT(opParameter != nullptr); | |||||
| MS_ASSERT(desc.type == schema::PrimitiveType_BatchNorm); | |||||
| auto *kernel = new (std::nothrow) BatchnormInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||||
| if (kernel == nullptr) { | |||||
| MS_LOG(ERROR) << "new BatchnormInt8CPUKernel fail!"; | |||||
| return nullptr; | |||||
| } | |||||
| auto ret = kernel->Init(); | |||||
| if (ret != RET_OK) { | |||||
| MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: " | |||||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||||
| delete kernel; | |||||
| return nullptr; | |||||
| } | |||||
| return kernel; | |||||
| } | |||||
| REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_BatchNorm, CpuBatchnormInt8KernelCreator) | |||||
| } // namespace mindspore::kernel | |||||
| @@ -0,0 +1,54 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_BATCHNORM_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_BATCHNORM_H_ | |||||
| #include <vector> | |||||
| #include "src/lite_kernel.h" | |||||
| #include "include/context.h" | |||||
| #include "src/runtime/kernel/arm/nnacl/int8/batchnorm_int8.h" | |||||
| #include "src/runtime/kernel/arm/nnacl/batchnorm_parameter.h" | |||||
| using mindspore::lite::Context; | |||||
| namespace mindspore::kernel { | |||||
| class BatchnormInt8CPUKernel : public LiteKernel { | |||||
| public: | |||||
| BatchnormInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs, | |||||
| const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx, | |||||
| const mindspore::lite::PrimitiveC *primitive) | |||||
| : LiteKernel(parameter, inputs, outputs, ctx, primitive) { | |||||
| batchnorm_param_ = reinterpret_cast<BatchNormParameter *>(parameter); | |||||
| } | |||||
| ~BatchnormInt8CPUKernel() override; | |||||
| int Init() override; | |||||
| int ReSize() override; | |||||
| int Run() override; | |||||
| int InitConstTensor(); | |||||
| int DoExecute(int tid); | |||||
| private: | |||||
| int8_t *in_addr_ = nullptr; | |||||
| int8_t *out_addr_ = nullptr; | |||||
| float *alpha_addr_ = nullptr; | |||||
| float *beta_addr_ = nullptr; | |||||
| BatchNormParameter *batchnorm_param_; | |||||
| }; | |||||
| } // namespace mindspore::kernel | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_BATCHNORM_H_ | |||||
| @@ -0,0 +1,29 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_BATCHNORM_PARAMETER_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_BATCHNORM_PARAMETER_H_ | |||||
| #include "nnacl/op_base.h" | |||||
| typedef struct BatchNormParameter { | |||||
| OpParameter op_parameter_; | |||||
| float epsilon_; | |||||
| int unit_; | |||||
| int channel_; | |||||
| } BatchNormParameter; | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_BATCHNORM_PARAMETER_H_ | |||||
| @@ -16,6 +16,7 @@ | |||||
| #include "nnacl/fp32/batchnorm.h" | #include "nnacl/fp32/batchnorm.h" | ||||
| #include <math.h> | #include <math.h> | ||||
| #include "nnacl/batchnorm_parameter.h" | |||||
| void BatchNorm(float *output_ptr, const float *input_ptr, const float *mean_ptr, const float *variance_ptr, int task_id, | void BatchNorm(float *output_ptr, const float *input_ptr, const float *mean_ptr, const float *variance_ptr, int task_id, | ||||
| BatchNormParameter *param) { | BatchNormParameter *param) { | ||||
| @@ -18,13 +18,7 @@ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_FP32_BATCHNORM_H_ | #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_FP32_BATCHNORM_H_ | ||||
| #include "nnacl/op_base.h" | #include "nnacl/op_base.h" | ||||
| typedef struct BatchNormParameter { | |||||
| OpParameter op_parameter_; | |||||
| float epsilon_; | |||||
| int unit_; | |||||
| int channel_; | |||||
| } BatchNormParameter; | |||||
| #include "nnacl/batchnorm_parameter.h" | |||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| extern "C" { | extern "C" { | ||||
| @@ -0,0 +1,31 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "nnacl/int8/batchnorm_int8.h" | |||||
| #include <math.h> | |||||
| #include "nnacl/batchnorm_parameter.h" | |||||
| void BatchNormInt8(int8_t *output_ptr, const int8_t *input_ptr, const float *alpha_ptr, const float *beta_ptr, | |||||
| int task_id, BatchNormParameter *param) { | |||||
| for (int c = task_id; c < param->channel_; c += param->op_parameter_.thread_num_) { | |||||
| for (int u = 0; u < param->unit_; u++) { | |||||
| int32_t output_tmp = round(input_ptr[u * param->channel_ + c] * alpha_ptr[c] + beta_ptr[c]); | |||||
| output_tmp = output_tmp > 127 ? 127 : output_tmp; | |||||
| output_tmp = output_tmp < -128 ? -128 : output_tmp; | |||||
| output_ptr[u * param->channel_ + c] = (int8_t)output_tmp; | |||||
| } | |||||
| } | |||||
| } | |||||
| @@ -0,0 +1,34 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_INT8_BATCHNORM_H_ | |||||
| #define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_INT8_BATCHNORM_H_ | |||||
| #include "nnacl/op_base.h" | |||||
| #include "nnacl/batchnorm_parameter.h" | |||||
| #ifdef __cplusplus | |||||
| extern "C" { | |||||
| #endif | |||||
| void BatchNormInt8(int8_t *output_ptr, const int8_t *input_ptr, const float *alpha_ptr, const float *beta_ptr, | |||||
| int task_id, BatchNormParameter *param); | |||||
| #ifdef __cplusplus | |||||
| } | |||||
| #endif | |||||
| #endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_INT8_BATCHNORM_H_ | |||||
| @@ -147,4 +147,63 @@ TEST_F(TestBatchnormFp32, FusedBNTest) { | |||||
| output0_tensor.SetData(nullptr); | output0_tensor.SetData(nullptr); | ||||
| MS_LOG(INFO) << "TestFusedBathNormFp32 accuracy passed"; | MS_LOG(INFO) << "TestFusedBathNormFp32 accuracy passed"; | ||||
| } | } | ||||
| TEST_F(TestBatchnormFp32, easyTest) { | |||||
| std::vector<float> in_data = {1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6}; | |||||
| std::vector<float> in_data1 = {0.1, 0.6}; | |||||
| std::vector<float> in_data2 = {3, 4}; | |||||
| std::vector<lite::tensor::Tensor *> inputs_tensor; | |||||
| std::vector<lite::tensor::Tensor *> outputs_tensor; | |||||
| BatchNormParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_BatchNorm; | |||||
| op_param.epsilon_ = 0.001f; | |||||
| std::vector<int> shape = {1, 1, 6, 2}; | |||||
| lite::tensor::Tensor input0_tensor; | |||||
| lite::tensor::Tensor input1_tensor; | |||||
| lite::tensor::Tensor input2_tensor; | |||||
| inputs_tensor.push_back(&input0_tensor); | |||||
| inputs_tensor.push_back(&input1_tensor); | |||||
| inputs_tensor.push_back(&input2_tensor); | |||||
| input0_tensor.SetData(in_data.data()); | |||||
| input1_tensor.SetData(in_data1.data()); | |||||
| input2_tensor.SetData(in_data2.data()); | |||||
| input0_tensor.set_shape(shape); | |||||
| input1_tensor.set_shape({2}); | |||||
| input2_tensor.set_shape({2}); | |||||
| std::vector<float> output(12); | |||||
| std::vector<float> corr_out = {0.519529, 1.69979, 1.09678, 2.19973, 1.67404, 2.69966, | |||||
| -0.63498, -2.29971, -1.21223, -2.79965, -1.78949, -3.29959}; | |||||
| lite::tensor::Tensor output0_tensor; | |||||
| outputs_tensor.push_back(&output0_tensor); | |||||
| output0_tensor.SetData(output.data()); | |||||
| output0_tensor.set_shape(shape); | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_BatchNorm}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| lite::Context ctx; | |||||
| ctx.thread_num_ = 1; | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor.shape(); | |||||
| kernel->Run(); | |||||
| printf("==================output data=================\n"); | |||||
| for (int i = 0; i < output0_tensor.ElementsNum(); i++) { | |||||
| std::cout << output[i] << " ,"; | |||||
| } | |||||
| std::cout << std::endl; | |||||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||||
| input0_tensor.SetData(nullptr); | |||||
| input1_tensor.SetData(nullptr); | |||||
| input2_tensor.SetData(nullptr); | |||||
| output0_tensor.SetData(nullptr); | |||||
| MS_LOG(INFO) << "TestBathNormFp32 accuracy passed"; | |||||
| } | |||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -0,0 +1,107 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include <iostream> | |||||
| #include "mindspore/core/utils/log_adapter.h" | |||||
| #include "common/common_test.h" | |||||
| #include "mindspore/lite/src/runtime/kernel/arm/nnacl/batchnorm_parameter.h" | |||||
| #include "mindspore/lite/src/runtime/kernel/arm/nnacl/int8/batchnorm_int8.h" | |||||
| #include "mindspore/lite/src/kernel_registry.h" | |||||
| #include "mindspore/lite/src/lite_kernel.h" | |||||
| namespace mindspore { | |||||
| class TestBatchnormInt8 : public mindspore::CommonTest { | |||||
| public: | |||||
| TestBatchnormInt8() {} | |||||
| }; | |||||
| TEST_F(TestBatchnormInt8, BNTest) { | |||||
| std::vector<int8_t> in_data = {11, 41, 21, 51, 31, 61, -11, -41, -21, -51, -31, -61}; | |||||
| std::vector<int8_t> in_data1 = {4, 14}; | |||||
| std::vector<int8_t> in_data2 = {29, 39}; | |||||
| std::vector<lite::tensor::Tensor *> inputs_tensor; | |||||
| std::vector<lite::tensor::Tensor *> outputs_tensor; | |||||
| BatchNormParameter op_param; | |||||
| op_param.op_parameter_.type_ = schema::PrimitiveType_BatchNorm; | |||||
| op_param.epsilon_ = 0.001f; | |||||
| std::vector<int> shape = {1, 1, 6, 2}; | |||||
| lite::tensor::QuantArg input_quant_arg; | |||||
| input_quant_arg.scale = 0.1; | |||||
| input_quant_arg.zeroPoint = 1; | |||||
| lite::tensor::QuantArg input_quant_arg_1; | |||||
| input_quant_arg_1.scale = 0.05; | |||||
| input_quant_arg_1.zeroPoint = 2; | |||||
| lite::tensor::QuantArg input_quant_arg_2; | |||||
| input_quant_arg_2.scale = 0.1; | |||||
| input_quant_arg_2.zeroPoint = -1; | |||||
| lite::tensor::QuantArg output_quant_arg; | |||||
| output_quant_arg.scale = 1; | |||||
| output_quant_arg.zeroPoint = 0; | |||||
| lite::tensor::Tensor input0_tensor; | |||||
| lite::tensor::Tensor input1_tensor; | |||||
| lite::tensor::Tensor input2_tensor; | |||||
| inputs_tensor.push_back(&input0_tensor); | |||||
| inputs_tensor.push_back(&input1_tensor); | |||||
| inputs_tensor.push_back(&input2_tensor); | |||||
| input0_tensor.SetData(in_data.data()); | |||||
| input1_tensor.SetData(in_data1.data()); | |||||
| input2_tensor.SetData(in_data2.data()); | |||||
| input0_tensor.set_shape(shape); | |||||
| input1_tensor.set_shape({2}); | |||||
| input2_tensor.set_shape({2}); | |||||
| input0_tensor.AddQuantParam(input_quant_arg); | |||||
| input1_tensor.AddQuantParam(input_quant_arg_1); | |||||
| input2_tensor.AddQuantParam(input_quant_arg_2); | |||||
| std::vector<int8_t> output(12); | |||||
| // std::vector<int8_t> corr_out1 = {5, 17, 11, 22, 17, 27, -6, -23, -12, -28, -18, -33}; | |||||
| std::vector<int8_t> corr_out = {1, 2, 1, 2, 2, 3, -1, -2, -1, -3, -2, -3}; | |||||
| lite::tensor::Tensor output0_tensor; | |||||
| outputs_tensor.push_back(&output0_tensor); | |||||
| output0_tensor.SetData(output.data()); | |||||
| output0_tensor.set_shape(shape); | |||||
| output0_tensor.AddQuantParam(output_quant_arg); | |||||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_BatchNorm}; | |||||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||||
| ASSERT_NE(creator, nullptr); | |||||
| lite::Context ctx; | |||||
| ctx.thread_num_ = 3; | |||||
| kernel::LiteKernel *kernel = | |||||
| creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr); | |||||
| ASSERT_NE(kernel, nullptr); | |||||
| auto output_tensor_shape = output0_tensor.shape(); | |||||
| kernel->Run(); | |||||
| printf("==================output data=================\n"); | |||||
| for (int i = 0; i < output0_tensor.ElementsNum(); i++) { | |||||
| printf("%d, ", output[i]); | |||||
| } | |||||
| std::cout << std::endl; | |||||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||||
| input0_tensor.SetData(nullptr); | |||||
| input1_tensor.SetData(nullptr); | |||||
| input2_tensor.SetData(nullptr); | |||||
| output0_tensor.SetData(nullptr); | |||||
| MS_LOG(INFO) << "TestBathNormFp32 accuracy passed"; | |||||
| } | |||||
| } // namespace mindspore | |||||