| @@ -155,3 +155,106 @@ class Range(PrimitiveWithInfer): | |||
| def infer_dtype(self, x_dtype): | |||
| validator.check_tensor_type_same({'x_dtype': x_dtype}, [mstype.float32, mstype.int32], self.name) | |||
| return x_dtype | |||
| class AscendQuant(PrimitiveWithInfer): | |||
| r""" | |||
| Returns the quantized value of input_x. | |||
| If `sqrt_mode` is False: | |||
| .. math:: | |||
| y = round(scale * x + offset) | |||
| If `sqrt_mode` is True: | |||
| .. math:: | |||
| y = round(scale * x * scale + offset) | |||
| Note: | |||
| This operation only support Ascend 310 inference environment. | |||
| Args: | |||
| scale (float) : Specifies the scaling ratio. | |||
| offset (float): Specifies the offset. | |||
| sqrt_mode (bool) : Specifies whether to perform square root on `scale`. Default: False. | |||
| round_mode (str): Specifies the way to round. Should be one of ["Round", "Floor", "Ceil", "Trunc"]. | |||
| Default: "Round". | |||
| Inputs: | |||
| - **input_x** (Tensor) : Input tensor. Its data type should be mindspore.float16 or mindspore.float32. | |||
| Outputs: | |||
| - Tensor: The quantized output tensor of type mindspore.int8. | |||
| Examples: | |||
| >>> input_x = Tensor([100.0, 150.0], mstype.float32) | |||
| >>> quant = P.AscendQuant(80.0, 0.0, False, "Round") | |||
| >>> y = quant(input_x) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, scale, offset, sqrt_mode=False, round_mode="Round"): | |||
| self.scale = validator.check_value_type("scale", scale, [float], self.name) | |||
| self.offset = validator.check_value_type("offset", offset, [float], self.name) | |||
| self.sqrt_mode = validator.check_value_type("sqrt_mode", sqrt_mode, [bool], self.name) | |||
| self.round_mode = validator.check_string("round_mode", round_mode, | |||
| ["Round", "Floor", "Ceil", "Trunc"], self.name) | |||
| def infer_shape(self, x_shape): | |||
| return x_shape | |||
| def infer_dtype(self, x_type): | |||
| validator.check_subclass("input_x", x_type, mstype.tensor, self.name) | |||
| validator.check_type_name("input_x", x_type, [mstype.float16, mstype.float32], self.name) | |||
| return mstype.int8 | |||
| class AscendDequant(PrimitiveWithInfer): | |||
| r""" | |||
| Returns the dequantized value of input_x. | |||
| This operation will do ReLU to the dequantized value if `relu_flag` is True. | |||
| If `sqrt_mode` is False: | |||
| .. math:: | |||
| y = x * deq\_scale | |||
| If `sqrt_mode` is True: | |||
| .. math:: | |||
| y = x * deq\_scale * deq\_scale | |||
| Note: | |||
| This operation only support Ascend 310 inference environment. | |||
| Args: | |||
| sqrt_mode (bool) : Specifies whether to perform square root on `scale`. Default: False. | |||
| relu_flag (bool): Specifies whether to perform ReLU. Default: False. | |||
| Inputs: | |||
| - **input_x** (Tensor) : Input tensor. Should be mindspore.int32. | |||
| - **deq_scale** (Tensor) : Specifies the scaling ratio. | |||
| Data type should be mindspore.float16 or mindspore.uint64 | |||
| Outputs: | |||
| - Tensor: The quantized output tensor of type mindspore.float16. | |||
| Examples: | |||
| >>> input_x = Tensor([100.0, 150.0], mstype.float32) | |||
| >>> dequant = P.AscendDequant(False, False) | |||
| >>> y = dequant(input_x) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, sqrt_mode=False, relu_flag=False): | |||
| self.sqrt_mode = validator.check_value_type("sqrt_mode", sqrt_mode, [bool], self.name) | |||
| self.relu_flag = validator.check_value_type("relu_flag", relu_flag, [bool], self.name) | |||
| def infer_shape(self, x_shape, deq_scale_shape): | |||
| return x_shape | |||
| def infer_dtype(self, x_type, deq_scale_type): | |||
| validator.check_subclass("x", x_type, mstype.tensor, self.name) | |||
| validator.check_type_name("x", x_type, [mstype.int32], self.name) | |||
| validator.check_type_name("deq_scale", deq_scale_type, [mstype.float16, mstype.uint64], self.name) | |||
| return mstype.float16 | |||
| @@ -39,8 +39,6 @@ __all__ = ["FakeQuantPerLayer", | |||
| "BatchNormFold2_D", | |||
| "BatchNormFold2GradD", | |||
| "BatchNormFold2GradReduce", | |||
| "AscendQuant", | |||
| "AscendDequant", | |||
| ] | |||
| @@ -977,104 +975,3 @@ class FakeQuantMinMaxPerChannelUpdate(PrimitiveWithInfer): | |||
| validator.check_tensor_type_same( | |||
| {"max": max_type}, valid_types, self.name) | |||
| return min_type, max_type | |||
| class AscendQuant(PrimitiveWithInfer): | |||
| r""" | |||
| Returns the quantized value of input_x. | |||
| If `sqrt_mode` is False: | |||
| .. math:: | |||
| y = round(scale * x + offset) | |||
| If `sqrt_mode` is True: | |||
| .. math:: | |||
| y = round(scale * x * scale + offset) | |||
| Note: | |||
| This operation only support Ascend 310 inference environment. | |||
| Args: | |||
| scale (float) : Specifies the scaling ratio. | |||
| offset (float): Specifies the offset. | |||
| sqrt_mode (bool) : Specifies whether to perform square root on `scale`. Default: False. | |||
| round_mode (str): Specifies the way to round. Should be one of ["Round", "Floor", "Ceil", "Trunc"]. | |||
| Default: "Round". | |||
| Inputs: | |||
| - **input_x** (Tensor) : Input tensor. Its data type should be mindspore.float16 or mindspore.float32. | |||
| Outputs: | |||
| - Tensor: The quantized output tensor of type mindspore.int8. | |||
| Examples: | |||
| >>> input_x = Tensor([100.0, 150.0], mstype.float32) | |||
| >>> quant = P.AscendQuant(80.0, 0.0, False, "Round") | |||
| >>> y = quant(input_x) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, scale, offset, sqrt_mode=False, round_mode="Round"): | |||
| self.scale = validator.check_value_type("scale", scale, [float], self.name) | |||
| self.offset = validator.check_value_type("offset", offset, [float], self.name) | |||
| self.sqrt_mode = validator.check_value_type("sqrt_mode", sqrt_mode, [bool], self.name) | |||
| self.round_mode = validator.check_string("round_mode", round_mode, | |||
| ["Round", "Floor", "Ceil", "Trunc"], self.name) | |||
| def infer_shape(self, x_shape): | |||
| return x_shape | |||
| def infer_dtype(self, x_type): | |||
| validator.check_subclass("input_x", x_type, mstype.tensor, self.name) | |||
| validator.check_type_name("input_x", x_type, [mstype.float16, mstype.float32], self.name) | |||
| return mstype.int8 | |||
| class AscendDequant(PrimitiveWithInfer): | |||
| r""" | |||
| Returns the dequantized value of input_x. | |||
| This operation will do ReLU to the dequantized value if `relu_flag` is True. | |||
| If `sqrt_mode` is False: | |||
| .. math:: | |||
| y = x * deq\_scale | |||
| If `sqrt_mode` is True: | |||
| .. math:: | |||
| y = x * deq\_scale * deq\_scale | |||
| Note: | |||
| This operation only support Ascend 310 inference environment. | |||
| Args: | |||
| sqrt_mode (bool) : Specifies whether to perform square root on `scale`. Default: False. | |||
| relu_flag (bool): Specifies whether to perform ReLU. Default: False. | |||
| Inputs: | |||
| - **input_x** (Tensor) : Input tensor. Should be mindspore.int32. | |||
| - **deq_scale** (Tensor) : Specifies the scaling ratio. | |||
| Data type should be mindspore.float16 or mindspore.uint64 | |||
| Outputs: | |||
| - Tensor: The quantized output tensor of type mindspore.float16. | |||
| Examples: | |||
| >>> input_x = Tensor([100.0, 150.0], mstype.float32) | |||
| >>> dequant = P.AscendDequant(False, False) | |||
| >>> y = dequant(input_x) | |||
| """ | |||
| @prim_attr_register | |||
| def __init__(self, sqrt_mode=False, relu_flag=False): | |||
| self.sqrt_mode = validator.check_value_type("sqrt_mode", sqrt_mode, [bool], self.name) | |||
| self.relu_flag = validator.check_value_type("relu_flag", relu_flag, [bool], self.name) | |||
| def infer_shape(self, x_shape, deq_scale_shape): | |||
| return x_shape | |||
| def infer_dtype(self, x_type, deq_scale_type): | |||
| validator.check_subclass("x", x_type, mstype.tensor, self.name) | |||
| validator.check_type_name("x", x_type, [mstype.int32], self.name) | |||
| validator.check_type_name("deq_scale", deq_scale_type, [mstype.float16, mstype.uint64], self.name) | |||
| return mstype.float16 | |||
| @@ -1664,35 +1664,35 @@ test_case_other_ops = [ | |||
| test_case_quant_ops = [ | |||
| ('AscendQuant_1', { | |||
| 'block': P.AscendQuant(0.5, 0.0, False, "Round"), | |||
| 'block': inner.AscendQuant(0.5, 0.0, False, "Round"), | |||
| 'desc_inputs': [Tensor(np.random.rand(1,2,4,4), mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('AscendQuant_2', { | |||
| 'block': P.AscendQuant(80.0, 10.0, True, "Round"), | |||
| 'block': inner.AscendQuant(80.0, 10.0, True, "Round"), | |||
| 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('AscendQuant_3', { | |||
| 'block': P.AscendQuant(80.0, 0.0, False, "Floor"), | |||
| 'block': inner.AscendQuant(80.0, 0.0, False, "Floor"), | |||
| 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('AscendQuant_4', { | |||
| 'block': P.AscendQuant(80.0, 0.0, False, "Ceil"), | |||
| 'block': inner.AscendQuant(80.0, 0.0, False, "Ceil"), | |||
| 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('AscendQuant_5', { | |||
| 'block': P.AscendQuant(80.0, 0.0, False, "Trunc"), | |||
| 'block': inner.AscendQuant(80.0, 0.0, False, "Trunc"), | |||
| 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('AscendQuant_6', { | |||
| 'block': P.AscendQuant(-80.0, 10.0, False, "Round"), | |||
| 'block': inner.AscendQuant(-80.0, 10.0, False, "Round"), | |||
| 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('AscendQuant_7', { | |||
| 'block': P.AscendQuant(80.0, -10.0, False, "Round"), | |||
| 'block': inner.AscendQuant(80.0, -10.0, False, "Round"), | |||
| 'desc_inputs': [Tensor([100.0, 200.0], mstype.float32)], | |||
| 'skip': ['backward']}), | |||
| ('AscendQuant_8', { | |||
| 'block': P.AscendQuant(80.0, 10.0, False, "Round"), | |||
| 'block': inner.AscendQuant(80.0, 10.0, False, "Round"), | |||
| 'desc_inputs': [Tensor([100.0, 200.0], mstype.float16)], | |||
| 'skip': ['backward']}), | |||
| ] | |||