| @@ -60,6 +60,7 @@ | |||
| #include "dataset/engine/gnn/graph.h" | |||
| #include "dataset/kernels/data/to_float16_op.h" | |||
| #include "dataset/text/kernels/jieba_tokenizer_op.h" | |||
| #include "dataset/text/kernels/ngram_op.h" | |||
| #include "dataset/text/kernels/unicode_char_tokenizer_op.h" | |||
| #include "dataset/text/vocab.h" | |||
| #include "dataset/text/kernels/lookup_op.h" | |||
| @@ -433,6 +434,11 @@ void bindTensorOps5(py::module *m) { | |||
| "Tensor operation to LookUp each word") | |||
| .def(py::init<std::shared_ptr<Vocab>, WordIdType>(), py::arg("vocab"), py::arg("unknown")) | |||
| .def(py::init<std::shared_ptr<Vocab>>(), py::arg("vocab")); | |||
| (void)py::class_<NgramOp, TensorOp, std::shared_ptr<NgramOp>>(*m, "NgramOp", "TensorOp performs ngram mapping") | |||
| .def(py::init<const std::vector<int32_t> &, int32_t, int32_t, const std::string &, const std::string &, | |||
| const std::string &>(), | |||
| py::arg("ngrams"), py::arg("l_pad_len"), py::arg("r_pad_len"), py::arg("l_pad_token"), py::arg("r_pad_token"), | |||
| py::arg("separator")); | |||
| } | |||
| void bindSamplerOps(py::module *m) { | |||
| @@ -4,4 +4,5 @@ add_library(text-kernels OBJECT | |||
| lookup_op.cc | |||
| jieba_tokenizer_op.cc | |||
| unicode_char_tokenizer_op.cc | |||
| ngram_op.cc | |||
| ) | |||
| @@ -14,8 +14,8 @@ | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef DATASET_NLP_KERNELS_LOOKUP_OP_H_ | |||
| #define DATASET_NLP_KERNELS_LOOKUP_OP_H_ | |||
| #ifndef DATASET_TEXT_KERNELS_LOOKUP_OP_H_ | |||
| #define DATASET_TEXT_KERNELS_LOOKUP_OP_H_ | |||
| #include <memory> | |||
| #include <vector> | |||
| @@ -61,4 +61,4 @@ class LookupOp : public TensorOp { | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // DATASET_NLP_KERNELS_LOOKUP_OP_H_ | |||
| #endif // DATASET_TEXT_KERNELS_LOOKUP_OP_H_ | |||
| @@ -0,0 +1,93 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "dataset/text/kernels/ngram_op.h" | |||
| #include <algorithm> | |||
| #include <memory> | |||
| #include <string> | |||
| #include <vector> | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| NgramOp::NgramOp(const std::vector<int32_t> &ngrams, int32_t l_len, int32_t r_len, const std::string &l_pad, | |||
| const std::string &r_pad, const std::string &separator) | |||
| : ngrams_(ngrams), | |||
| l_len_(l_len), | |||
| r_len_(r_len), | |||
| l_pad_with_sp_(l_pad + separator), | |||
| r_pad_with_sp_(r_pad + separator), | |||
| separator_(separator) {} | |||
| Status NgramOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) { | |||
| CHECK_FAIL_RETURN_UNEXPECTED(input->type() == DataType::DE_STRING && input->Rank() == 1, "Not a 1-D str Tensor"); | |||
| std::vector<int32_t> offsets; // offsets for each str | |||
| std::vector<std::string> res; // holds the result of ngrams | |||
| std::string str_buffer; // concat all pad tokens with string interleaved with separators | |||
| res.reserve(input->shape().NumOfElements()); // this should be more than enough | |||
| offsets.reserve(1 + l_len_ + r_len_ + input->shape().NumOfElements()); | |||
| str_buffer.reserve(l_pad_with_sp_.size() * l_len_ + r_pad_with_sp_.size() * r_len_ + input->SizeInBytes()); | |||
| offsets.push_back(str_buffer.size()); // insert 0 as the starting pos | |||
| for (int i = 0; i < l_len_; i++) offsets.push_back((str_buffer += l_pad_with_sp_).size()); | |||
| for (auto itr = input->begin<std::string_view>(); itr != input->end<std::string_view>(); itr++) { | |||
| str_buffer += (*itr); | |||
| str_buffer += separator_; | |||
| offsets.push_back(str_buffer.size()); | |||
| } | |||
| for (int i = 0; i < r_len_; i++) offsets.push_back((str_buffer += r_pad_with_sp_).size()); | |||
| for (auto n : ngrams_) { | |||
| CHECK_FAIL_RETURN_UNEXPECTED(n > 0, "n gram needs to be a positive number.\n"); | |||
| int32_t start_ind = l_len_ - std::min(l_len_, n - 1); | |||
| int32_t end_ind = offsets.size() - r_len_ + std::min(r_len_, n - 1); | |||
| if (end_ind - start_ind < n) { | |||
| res.emplace_back(std::string()); // push back empty string | |||
| } else { | |||
| for (int i = start_ind; i < end_ind - n; i++) { | |||
| res.emplace_back(str_buffer.substr(offsets[i], offsets[i + n] - offsets[i] - separator_.size())); | |||
| } | |||
| } | |||
| } | |||
| RETURN_IF_NOT_OK(Tensor::CreateTensor(output, res, TensorShape({static_cast<dsize_t>(res.size())}))); | |||
| return Status::OK(); | |||
| } | |||
| void NgramOp::Print(std::ostream &out) const { | |||
| out << "NgramOp: " | |||
| << "left pad width: " << l_len_ << " left pad token with separator: " << l_pad_with_sp_ << "\n" | |||
| << "right pad width: " << r_len_ << " right pad token with separator: " << r_pad_with_sp_ << "\n" | |||
| << "separator: " << separator_ << "\n"; | |||
| } | |||
| Status NgramOp::OutputShape(const std::vector<TensorShape> &inputs, std::vector<TensorShape> &outputs) { | |||
| CHECK_FAIL_RETURN_UNEXPECTED(inputs.size() == NumInput(), "incorrect num of inputs\n"); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(inputs[0].Rank() == 1, "ngram only works with 1-dim data\n"); | |||
| dsize_t num_elements = ngrams_.size(); | |||
| for (int32_t n : ngrams_) { | |||
| // here since rank == 1, NumOfElements == shape[0]. add padding length to string | |||
| int32_t len_with_padding = inputs[0].NumOfElements() + std::min(n - 1, l_len_) + std::min(n - 1, r_len_); | |||
| // if len_with_padding - n < 0, this would return an empty string | |||
| num_elements += std::max(len_with_padding - n, 0); | |||
| } | |||
| outputs.emplace_back(TensorShape({num_elements})); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(outputs.size() == NumOutput(), "incorrect num of outputs\n"); | |||
| return Status::OK(); | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,74 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef DATASET_TEXT_KERNELS_NGRAM_OP_H_ | |||
| #define DATASET_TEXT_KERNELS_NGRAM_OP_H_ | |||
| #include <string> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "dataset/core/tensor.h" | |||
| #include "dataset/kernels/tensor_op.h" | |||
| #include "dataset/util/status.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| namespace py = pybind11; | |||
| class NgramOp : public TensorOp { | |||
| public: | |||
| // Constructor of Ngram model | |||
| // @param const std::vector<int32_t> &ngrams | |||
| // @param int32_tl_len - padding length on the left | |||
| // @param int32_t r_len - padding length on the right | |||
| // @param const std::string &l_pad - padding token on the left | |||
| // @param const std::string &r_pad - padding token on the right | |||
| // @param const std::string &separator - use to join strings | |||
| NgramOp(const std::vector<int32_t> &ngrams, int32_t l_len, int32_t r_len, const std::string &l_pad, | |||
| const std::string &r_pad, const std::string &separator); | |||
| // perform ngram model on each tensor | |||
| // @param const std::shared_ptr<Tensor> &input | |||
| // @param std::shared_ptr<Tensor> *output | |||
| // @return error code | |||
| Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override; | |||
| // destructor | |||
| ~NgramOp() override = default; | |||
| // @param std::vector<TensorShape> &inputs - shape of input tensors | |||
| // @param std::vector<TensorShape> &outputs - shape of output tensors | |||
| // @return error code | |||
| Status OutputShape(const std::vector<TensorShape> &inputs, std::vector<TensorShape> &outputs) override; | |||
| // print arg for debugging | |||
| // @param std::ostream &out | |||
| void Print(std::ostream &out) const override; | |||
| private: | |||
| std::vector<int32_t> ngrams_; // list of n grams | |||
| int32_t l_len_; // left padding length | |||
| int32_t r_len_; // right padding length | |||
| std::string l_pad_with_sp_; // left padding appended with separator | |||
| std::string r_pad_with_sp_; // right padding appended with separator | |||
| std::string separator_; // separator | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // DATASET_TEXT_KERNELS_NGRAM_OP_H_ | |||
| @@ -14,8 +14,8 @@ | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef DATASET_NLP_VOCAB_H_ | |||
| #define DATASET_NLP_VOCAB_H_ | |||
| #ifndef DATASET_TEXT_VOCAB_H_ | |||
| #define DATASET_TEXT_VOCAB_H_ | |||
| #include <string> | |||
| #include <memory> | |||
| @@ -87,4 +87,4 @@ class Vocab { | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // DATASET_NLP_VOCAB_H_ | |||
| #endif // DATASET_TEXT_VOCAB_H_ | |||
| @@ -15,5 +15,5 @@ | |||
| """ | |||
| mindspore.dataset.text | |||
| """ | |||
| from .transforms import Lookup, JiebaTokenizer, UnicodeCharTokenizer | |||
| from .transforms import Lookup, JiebaTokenizer, UnicodeCharTokenizer, Ngram | |||
| from .utils import to_str, to_bytes, JiebaMode, Vocab | |||
| @@ -22,7 +22,7 @@ import mindspore._c_dataengine as cde | |||
| from .utils import JiebaMode | |||
| from .validators import check_lookup, check_jieba_add_dict, \ | |||
| check_jieba_add_word, check_jieba_init | |||
| check_jieba_add_word, check_jieba_init, check_ngram | |||
| class Lookup(cde.LookupOp): | |||
| @@ -41,6 +41,27 @@ class Lookup(cde.LookupOp): | |||
| super().__init__(vocab, unknown) | |||
| class Ngram(cde.NgramOp): | |||
| """ | |||
| TensorOp to generate n-gram from a 1-D string Tensor | |||
| Refer to https://en.wikipedia.org/wiki/N-gram#Examples for an explanation of what n-gram is. | |||
| Args: | |||
| n(int or list): n in n-gram, n >= 1. n is a list of positive integers, for e.g. n=[4,3], The result | |||
| would be a 4-gram followed by a 3-gram in the same tensor. | |||
| left_pad(tuple, optional): ("pad_token",pad_width). Padding performed on left side of the sequence. pad_width | |||
| will be capped at n-1. left_pad=("_",2) would pad left side of the sequence with "__". (Default is None) | |||
| right_pad(tuple, optional): ("pad_token",pad_width). Padding performed on right side of the sequence. pad_width | |||
| will be capped at n-1. right_pad=("-":2) would pad right side of the sequence with "--". (Default is None) | |||
| separator(str,optional): symbol used to join strings together. for e.g. if 2-gram the ["mindspore", "amazing"] | |||
| with separator="-" the result would be ["mindspore-amazing"]. (Default is None which means whitespace is used) | |||
| """ | |||
| @check_ngram | |||
| def __init__(self, n, left_pad=None, right_pad=None, separator=None): | |||
| super().__init__(ngrams=n, l_pad_len=left_pad[1], r_pad_len=right_pad[1], l_pad_token=left_pad[0], | |||
| r_pad_token=right_pad[0], separator=separator) | |||
| DE_C_INTER_JIEBA_MODE = { | |||
| JiebaMode.MIX: cde.JiebaMode.DE_JIEBA_MIX, | |||
| JiebaMode.MP: cde.JiebaMode.DE_JIEBA_MP, | |||
| @@ -34,9 +34,11 @@ def check_lookup(method): | |||
| if "unknown" in kwargs: | |||
| unknown = kwargs.get("unknown") | |||
| if unknown is not None: | |||
| assert isinstance(unknown, int) and unknown >= 0, "unknown needs to be a non-negative integer" | |||
| if not (isinstance(unknown, int) and unknown >= 0): | |||
| raise ValueError("unknown needs to be a non-negative integer") | |||
| assert isinstance(vocab, cde.Vocab), "vocab is not an instance of cde.Vocab" | |||
| if not isinstance(vocab, cde.Vocab): | |||
| raise ValueError("vocab is not an instance of cde.Vocab") | |||
| kwargs["vocab"] = vocab | |||
| kwargs["unknown"] = unknown | |||
| @@ -58,13 +60,17 @@ def check_from_file(method): | |||
| if "vocab_size" in kwargs: | |||
| vocab_size = kwargs.get("vocab_size") | |||
| assert isinstance(file_path, str), "file_path needs to be str" | |||
| if not isinstance(file_path, str): | |||
| raise ValueError("file_path needs to be str") | |||
| if delimiter is not None: | |||
| assert isinstance(delimiter, str), "delimiter needs to be str" | |||
| if not isinstance(delimiter, str): | |||
| raise ValueError("delimiter needs to be str") | |||
| else: | |||
| delimiter = "" | |||
| if vocab_size is not None: | |||
| assert isinstance(vocab_size, int) and vocab_size > 0, "vocab size needs to be a positive integer" | |||
| if not (isinstance(vocab_size, int) and vocab_size > 0): | |||
| raise ValueError("vocab size needs to be a positive integer") | |||
| else: | |||
| vocab_size = -1 | |||
| kwargs["file_path"] = file_path | |||
| @@ -83,9 +89,11 @@ def check_from_list(method): | |||
| word_list, = (list(args) + [None])[:1] | |||
| if "word_list" in kwargs: | |||
| word_list = kwargs.get("word_list") | |||
| assert isinstance(word_list, list), "word_list needs to be a list of words" | |||
| if not isinstance(word_list, list): | |||
| raise ValueError("word_list needs to be a list of words") | |||
| for word in word_list: | |||
| assert isinstance(word, str), "each word in word list needs to be type str" | |||
| if not isinstance(word, str): | |||
| raise ValueError("each word in word list needs to be type str") | |||
| kwargs["word_list"] = word_list | |||
| return method(self, **kwargs) | |||
| @@ -101,10 +109,13 @@ def check_from_dict(method): | |||
| word_dict, = (list(args) + [None])[:1] | |||
| if "word_dict" in kwargs: | |||
| word_dict = kwargs.get("word_dict") | |||
| assert isinstance(word_dict, dict), "word_dict needs to be a list of word,id pairs" | |||
| if not isinstance(word_dict, dict): | |||
| raise ValueError("word_dict needs to be a list of word,id pairs") | |||
| for word, word_id in word_dict.items(): | |||
| assert isinstance(word, str), "each word in word_dict needs to be type str" | |||
| assert isinstance(word_id, int) and word_id >= 0, "each word id needs to be positive integer" | |||
| if not isinstance(word, str): | |||
| raise ValueError("each word in word_dict needs to be type str") | |||
| if not (isinstance(word_id, int) and word_id >= 0): | |||
| raise ValueError("each word id needs to be positive integer") | |||
| kwargs["word_dict"] = word_dict | |||
| return method(self, **kwargs) | |||
| @@ -173,3 +184,61 @@ def check_jieba_add_dict(method): | |||
| return method(self, **kwargs) | |||
| return new_method | |||
| def check_ngram(method): | |||
| """A wrapper that wrap a parameter checker to the original function(crop operation).""" | |||
| @wraps(method) | |||
| def new_method(self, *args, **kwargs): | |||
| n, left_pad, right_pad, separator = (list(args) + 4 * [None])[:4] | |||
| if "n" in kwargs: | |||
| n = kwargs.get("n") | |||
| if "left_pad" in kwargs: | |||
| left_pad = kwargs.get("left_pad") | |||
| if "right_pad" in kwargs: | |||
| right_pad = kwargs.get("right_pad") | |||
| if "separator" in kwargs: | |||
| separator = kwargs.get("separator") | |||
| if isinstance(n, int): | |||
| n = [n] | |||
| if not (isinstance(n, list) and n != []): | |||
| raise ValueError("n needs to be a non-empty list of positive integers") | |||
| for gram in n: | |||
| if not (isinstance(gram, int) and gram > 0): | |||
| raise ValueError("n in ngram needs to be a positive number\n") | |||
| if left_pad is None: | |||
| left_pad = ("", 0) | |||
| if right_pad is None: | |||
| right_pad = ("", 0) | |||
| if not (isinstance(left_pad, tuple) and len(left_pad) == 2 and isinstance(left_pad[0], str) and isinstance( | |||
| left_pad[1], int)): | |||
| raise ValueError("left_pad needs to be a tuple of (str, int) str is pad token and int is pad_width") | |||
| if not (isinstance(right_pad, tuple) and len(right_pad) == 2 and isinstance(right_pad[0], str) and isinstance( | |||
| right_pad[1], int)): | |||
| raise ValueError("right_pad needs to be a tuple of (str, int) str is pad token and int is pad_width") | |||
| if not (left_pad[1] >= 0 and right_pad[1] >= 0): | |||
| raise ValueError("padding width need to be positive numbers") | |||
| if separator is None: | |||
| separator = " " | |||
| if not isinstance(separator, str): | |||
| raise ValueError("separator needs to be a string") | |||
| kwargs["n"] = n | |||
| kwargs["left_pad"] = left_pad | |||
| kwargs["right_pad"] = right_pad | |||
| kwargs["separator"] = separator | |||
| return method(self, **kwargs) | |||
| return new_method | |||
| @@ -0,0 +1,115 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================== | |||
| """ | |||
| Testing NgramOP in DE | |||
| """ | |||
| import mindspore.dataset as ds | |||
| import mindspore.dataset.text as nlp | |||
| import numpy as np | |||
| def test_multiple_ngrams(): | |||
| """ test n-gram where n is a list of integers""" | |||
| plates_mottos = ["WildRose Country", "Canada's Ocean Playground", "Land of Living Skies"] | |||
| n_gram_mottos = [] | |||
| n_gram_mottos.append( | |||
| ['WildRose', 'Country', '_ WildRose', 'WildRose Country', 'Country _', '_ _ WildRose', '_ WildRose Country', | |||
| 'WildRose Country _', 'Country _ _']) | |||
| n_gram_mottos.append( | |||
| ["Canada's", 'Ocean', 'Playground', "_ Canada's", "Canada's Ocean", 'Ocean Playground', 'Playground _', | |||
| "_ _ Canada's", "_ Canada's Ocean", "Canada's Ocean Playground", 'Ocean Playground _', 'Playground _ _']) | |||
| n_gram_mottos.append( | |||
| ['Land', 'of', 'Living', 'Skies', '_ Land', 'Land of', 'of Living', 'Living Skies', 'Skies _', '_ _ Land', | |||
| '_ Land of', 'Land of Living', 'of Living Skies', 'Living Skies _', 'Skies _ _']) | |||
| def gen(texts): | |||
| for line in texts: | |||
| yield (np.array(line.split(" "), dtype='S'),) | |||
| dataset = ds.GeneratorDataset(gen(plates_mottos), column_names=["text"]) | |||
| dataset = dataset.map(input_columns=["text"], operations=nlp.Ngram([1, 2, 3], ("_", 2), ("_", 2), " ")) | |||
| i = 0 | |||
| for data in dataset.create_dict_iterator(): | |||
| assert [d.decode("utf8") for d in data["text"]] == n_gram_mottos[i] | |||
| i += 1 | |||
| def test_simple_ngram(): | |||
| """ test simple gram with only one n value""" | |||
| plates_mottos = ["Friendly Manitoba", "Yours to Discover", "Land of Living Skies", | |||
| "Birthplace of the Confederation"] | |||
| n_gram_mottos = [[]] | |||
| n_gram_mottos.append(["Yours to Discover"]) | |||
| n_gram_mottos.append(['Land of Living', 'of Living Skies']) | |||
| n_gram_mottos.append(['Birthplace of the', 'of the Confederation']) | |||
| def gen(texts): | |||
| for line in texts: | |||
| yield (np.array(line.split(" "), dtype='S'),) | |||
| dataset = ds.GeneratorDataset(gen(plates_mottos), column_names=["text"]) | |||
| dataset = dataset.map(input_columns=["text"], operations=nlp.Ngram(3, separator=None)) | |||
| i = 0 | |||
| for data in dataset.create_dict_iterator(): | |||
| assert [d.decode("utf8") for d in data["text"]] == n_gram_mottos[i], i | |||
| i += 1 | |||
| def test_corner_cases(): | |||
| """ testing various corner cases and exceptions""" | |||
| def test_config(input_line, output_line, n, l_pad=None, r_pad=None, sep=None): | |||
| def gen(text): | |||
| yield (np.array(text.split(" "), dtype='S'),) | |||
| dataset = ds.GeneratorDataset(gen(input_line), column_names=["text"]) | |||
| dataset = dataset.map(input_columns=["text"], operations=nlp.Ngram(n, l_pad, r_pad, separator=sep)) | |||
| for data in dataset.create_dict_iterator(): | |||
| assert [d.decode("utf8") for d in data["text"]] == output_line, output_line | |||
| # test empty separator | |||
| test_config("Beautiful British Columbia", ['BeautifulBritish', 'BritishColumbia'], 2, sep="") | |||
| # test separator with longer length | |||
| test_config("Beautiful British Columbia", ['Beautiful^-^British^-^Columbia'], 3, sep="^-^") | |||
| # test left pad != right pad | |||
| test_config("Lone Star", ['The Lone Star State'], 4, ("The", 1), ("State", 1)) | |||
| # test invalid n | |||
| try: | |||
| test_config("Yours to Discover", "", [0, [1]]) | |||
| except Exception as e: | |||
| assert "ngram needs to be a positive number" in str(e) | |||
| # test empty n | |||
| try: | |||
| test_config("Yours to Discover", "", []) | |||
| except Exception as e: | |||
| assert "n needs to be a non-empty list" in str(e) | |||
| # test invalid pad | |||
| try: | |||
| test_config("Yours to Discover", "", [1], ("str", -1)) | |||
| except Exception as e: | |||
| assert "padding width need to be positive numbers" in str(e) | |||
| # test invalid pad | |||
| try: | |||
| test_config("Yours to Discover", "", [1], ("str", "rts")) | |||
| except Exception as e: | |||
| assert "pad needs to be a tuple of (str, int)" in str(e) | |||
| if __name__ == '__main__': | |||
| test_multiple_ngrams() | |||
| test_simple_ngram() | |||
| test_corner_cases() | |||