Merge pull request !4792 from zhaoting/readmetags/v0.7.0-beta
| @@ -1,17 +1,37 @@ | |||
| # MobileNetV2 Description | |||
| # Contents | |||
| - [MobileNetV2 Description](#mobilenetv2-description) | |||
| - [Model Architecture](#model-architecture) | |||
| - [Dataset](#dataset) | |||
| - [Features](#features) | |||
| - [Mixed Precision](#mixed-precision) | |||
| - [Environment Requirements](#environment-requirements) | |||
| - [Script Description](#script-description) | |||
| - [Script and Sample Code](#script-and-sample-code) | |||
| - [Training Process](#training-process) | |||
| - [Evaluation Process](#evaluation-process) | |||
| - [Evaluation](#evaluation) | |||
| - [Model Description](#model-description) | |||
| - [Performance](#performance) | |||
| - [Training Performance](#evaluation-performance) | |||
| - [Inference Performance](#evaluation-performance) | |||
| - [Description of Random Situation](#description-of-random-situation) | |||
| - [ModelZoo Homepage](#modelzoo-homepage) | |||
| # [MobileNetV2 Description](#contents) | |||
| MobileNetV2 is tuned to mobile phone CPUs through a combination of hardware- aware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances.Nov 20, 2019. | |||
| [Paper](https://arxiv.org/pdf/1905.02244) Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for MobileNetV2." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324. 2019. | |||
| # Model architecture | |||
| # [Model architecture](#contents) | |||
| The overall network architecture of MobileNetV2 is show below: | |||
| [Link](https://arxiv.org/pdf/1905.02244) | |||
| # Dataset | |||
| # [Dataset](#contents) | |||
| Dataset used: [imagenet](http://www.image-net.org/) | |||
| @@ -22,10 +42,14 @@ Dataset used: [imagenet](http://www.image-net.org/) | |||
| - Note: Data will be processed in src/dataset.py | |||
| # Features | |||
| # [Features](#contents) | |||
| ## [Mixed Precision(Ascend)](#contents) | |||
| # Environment Requirements | |||
| The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. | |||
| For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’. | |||
| # [Environment Requirements](#contents) | |||
| - Hardware(Ascend/GPU) | |||
| - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. | |||
| @@ -36,30 +60,33 @@ Dataset used: [imagenet](http://www.image-net.org/) | |||
| - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html) | |||
| # Script description | |||
| # [Script description](#contents) | |||
| ## Script and sample code | |||
| ## [Script and sample code](#contents) | |||
| ```python | |||
| ├── MobileNetV2 | |||
| ├── Readme.md | |||
| ├── Readme.md # descriptions about MobileNetV2 | |||
| ├── scripts | |||
| │ ├──run_train.sh | |||
| │ ├──run_eval.sh | |||
| │ ├──run_train.sh # shell script for train | |||
| │ ├──run_eval.sh # shell script for evaluation | |||
| ├── src | |||
| │ ├──config.py | |||
| │ ├──dataset.py | |||
| │ ├──luanch.py | |||
| │ ├──lr_generator.py | |||
| │ ├──mobilenetV2.py | |||
| ├── train.py | |||
| ├── eval.py | |||
| │ ├──config.py # parameter configuration | |||
| │ ├──dataset.py # creating dataset | |||
| │ ├──launch.py # start python script | |||
| │ ├──lr_generator.py # learning rate config | |||
| │ ├──mobilenetV2.py # MobileNetV2 architecture | |||
| ├── train.py # training script | |||
| ├── eval.py # evaluation script | |||
| ``` | |||
| ## Training process | |||
| ## [Training process](#contents) | |||
| ### Usage | |||
| You can start training using python or shell scripts. The usage of shell scripts as follows: | |||
| - Ascend: sh run_train.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE] [DATASET_PATH] [CKPT_PATH] | |||
| - GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] | |||
| @@ -67,8 +94,13 @@ Dataset used: [imagenet](http://www.image-net.org/) | |||
| ``` | |||
| # training example | |||
| Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json ~/imagenet/train/ mobilenet_199.ckpt | |||
| GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/ | |||
| python: | |||
| Ascend: python train.py --dataset_path ~/imagenet/train/ --device_targe Ascend | |||
| GPU: python train.py --dataset_path ~/imagenet/train/ --device_targe GPU | |||
| shell: | |||
| Ascend: sh run_train.sh Ascend 8 0,1,2,3,4,5,6,7 hccl_config.json ~/imagenet/train/ mobilenet_199.ckpt | |||
| GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/ | |||
| ``` | |||
| ### Result | |||
| @@ -82,10 +114,12 @@ epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr: | |||
| epoch time: 138331.250, per step time: 221.330, avg loss: 3.917 | |||
| ``` | |||
| ## Eval process | |||
| ## [Eval process](#contents) | |||
| ### Usage | |||
| You can start training using python or shell scripts. The usage of shell scripts as follows: | |||
| - Ascend: sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH] | |||
| - GPU: sh run_infer.sh GPU [DATASET_PATH] [CHECKPOINT_PATH] | |||
| @@ -93,8 +127,13 @@ epoch time: 138331.250, per step time: 221.330, avg loss: 3.917 | |||
| ``` | |||
| # infer example | |||
| Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt | |||
| GPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt | |||
| python: | |||
| Ascend: python eval.py --dataset_path ~/imagenet/val/ --checkpoint_path mobilenet_199.ckpt --device_targe Ascend | |||
| GPU: python eval.py --dataset_path ~/imagenet/val/ --checkpoint_path mobilenet_199.ckpt --device_targe GPU | |||
| shell: | |||
| Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt | |||
| GPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt | |||
| ``` | |||
| > checkpoint can be produced in training process. | |||
| @@ -107,9 +146,9 @@ Inference result will be stored in the example path, you can find result like th | |||
| result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt | |||
| ``` | |||
| # Model description | |||
| # [Model description](#contents) | |||
| ## Performance | |||
| ## [Performance](#contents) | |||
| ### Training Performance | |||
| @@ -147,5 +186,11 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625. | |||
| | Total time | | | | | |||
| | Model for inference | | | | | |||
| # ModelZoo Homepage | |||
| [Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo) | |||
| # [Description of Random Situation](#contents) | |||
| In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py. | |||
| # [ModelZoo Homepage](#contents) | |||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | |||
| @@ -39,7 +39,7 @@ if __name__ == '__main__': | |||
| net = None | |||
| if args_opt.device_target == "Ascend": | |||
| config = config_ascend | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| device_id = int(os.getenv('DEVICE_ID', '0')) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||
| device_id=device_id, save_graphs=False) | |||
| net = mobilenet_v2(num_classes=config.num_classes, device_target="Ascend") | |||
| @@ -47,7 +47,7 @@ fi | |||
| mkdir ../eval | |||
| cd ../eval || exit | |||
| # luanch | |||
| # launch | |||
| python ${BASEPATH}/../eval.py \ | |||
| --device_target=$1 \ | |||
| --dataset_path=$2 \ | |||
| @@ -35,8 +35,8 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1, | |||
| dataset | |||
| """ | |||
| if device_target == "Ascend": | |||
| rank_size = int(os.getenv("RANK_SIZE")) | |||
| rank_id = int(os.getenv("RANK_ID")) | |||
| rank_size = int(os.getenv("RANK_SIZE", '1')) | |||
| rank_id = int(os.getenv("RANK_ID", '0')) | |||
| if rank_size == 1: | |||
| ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True) | |||
| else: | |||
| @@ -53,11 +53,10 @@ parser.add_argument('--device_target', type=str, default=None, help='run device_ | |||
| args_opt = parser.parse_args() | |||
| if args_opt.device_target == "Ascend": | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| rank_id = int(os.getenv('RANK_ID')) | |||
| rank_size = int(os.getenv('RANK_SIZE')) | |||
| device_id = int(os.getenv('DEVICE_ID', '0')) | |||
| rank_id = int(os.getenv('RANK_ID', '0')) | |||
| rank_size = int(os.getenv('RANK_SIZE', '1')) | |||
| run_distribute = rank_size > 1 | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target="Ascend", | |||
| device_id=device_id, save_graphs=False) | |||
| @@ -1,17 +1,35 @@ | |||
| # MobileNetV3 Description | |||
| # Contents | |||
| - [MobileNetV3 Description](#mobilenetv3-description) | |||
| - [Model Architecture](#model-architecture) | |||
| - [Dataset](#dataset) | |||
| - [Environment Requirements](#environment-requirements) | |||
| - [Script Description](#script-description) | |||
| - [Script and Sample Code](#script-and-sample-code) | |||
| - [Training Process](#training-process) | |||
| - [Evaluation Process](#evaluation-process) | |||
| - [Evaluation](#evaluation) | |||
| - [Model Description](#model-description) | |||
| - [Performance](#performance) | |||
| - [Training Performance](#evaluation-performance) | |||
| - [Inference Performance](#evaluation-performance) | |||
| - [Description of Random Situation](#description-of-random-situation) | |||
| - [ModelZoo Homepage](#modelzoo-homepage) | |||
| # [MobileNetV3 Description](#contents) | |||
| MobileNetV3 is tuned to mobile phone CPUs through a combination of hardware- aware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances.Nov 20, 2019. | |||
| [Paper](https://arxiv.org/pdf/1905.02244) Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for mobilenetv3." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324. 2019. | |||
| # Model architecture | |||
| # [Model architecture](#contents) | |||
| The overall network architecture of MobileNetV3 is show below: | |||
| [Link](https://arxiv.org/pdf/1905.02244) | |||
| # Dataset | |||
| # [Dataset](#contents) | |||
| Dataset used: [imagenet](http://www.image-net.org/) | |||
| @@ -22,10 +40,7 @@ Dataset used: [imagenet](http://www.image-net.org/) | |||
| - Note: Data will be processed in src/dataset.py | |||
| # Features | |||
| # Environment Requirements | |||
| # [Environment Requirements](#contents) | |||
| - Hardware(GPU) | |||
| - Prepare hardware environment with GPU processor. | |||
| @@ -36,37 +51,42 @@ Dataset used: [imagenet](http://www.image-net.org/) | |||
| - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html) | |||
| # Script description | |||
| # [Script description](#contents) | |||
| ## Script and sample code | |||
| ## [Script and sample code](#contents) | |||
| ```python | |||
| ├── MobilenetV3 | |||
| ├── Readme.md | |||
| ├── MobileNetV3 | |||
| ├── Readme.md # descriptions about MobileNetV3 | |||
| ├── scripts | |||
| │ ├──run_train.sh | |||
| │ ├──run_eval.sh | |||
| │ ├──run_train.sh # shell script for train | |||
| │ ├──run_eval.sh # shell script for evaluation | |||
| ├── src | |||
| │ ├──config.py | |||
| │ ├──dataset.py | |||
| │ ├──luanch.py | |||
| │ ├──lr_generator.py | |||
| │ ├──mobilenetV2.py | |||
| ├── train.py | |||
| ├── eval.py | |||
| │ ├──config.py # parameter configuration | |||
| │ ├──dataset.py # creating dataset | |||
| │ ├──launch.py # start python script | |||
| │ ├──lr_generator.py # learning rate config | |||
| │ ├──mobilenetV3.py # MobileNetV3 architecture | |||
| ├── train.py # training script | |||
| ├── eval.py # evaluation script | |||
| ``` | |||
| ## Training process | |||
| ## [Training process](#contents) | |||
| ### Usage | |||
| You can start training using python or shell scripts. The usage of shell scripts as follows: | |||
| - GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] | |||
| ### Launch | |||
| ``` | |||
| # training example | |||
| GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/ | |||
| python: | |||
| GPU: python train.py --dataset_path ~/imagenet/train/ --device_targe GPU | |||
| shell: | |||
| GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/ | |||
| ``` | |||
| ### Result | |||
| @@ -80,16 +100,22 @@ epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr: | |||
| epoch time: 138331.250, per step time: 221.330, avg loss: 3.917 | |||
| ``` | |||
| ## Eval process | |||
| ## [Eval process](#contents) | |||
| ### Usage | |||
| You can start training using python or shell scripts. The usage of shell scripts as follows: | |||
| - GPU: sh run_infer.sh GPU [DATASET_PATH] [CHECKPOINT_PATH] | |||
| ### Launch | |||
| ``` | |||
| # infer example | |||
| python: | |||
| GPU: python eval.py --dataset_path ~/imagenet/val/ --checkpoint_path mobilenet_199.ckpt --device_targe GPU | |||
| shell: | |||
| GPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt | |||
| ``` | |||
| @@ -103,46 +129,50 @@ Inference result will be stored in the example path, you can find result like th | |||
| result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt | |||
| ``` | |||
| # Model description | |||
| # [Model description](#contents) | |||
| ## Performance | |||
| ## [Performance](#contents) | |||
| ### Training Performance | |||
| | Parameters | MobilenetV3 | | | |||
| | -------------------------- | ---------------------------------------------------------- | ------------------------- | | |||
| | Model Version | | large | | |||
| | Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMX2 V100-32G | | |||
| | uploaded Date | 05/06/2020 | 05/06/2020 | | |||
| | MindSpore Version | 0.3.0 | 0.3.0 | | |||
| | Dataset | ImageNet | ImageNet | | |||
| | Training Parameters | src/config.py | src/config.py | | |||
| | Optimizer | Momentum | Momentum | | |||
| | Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy | | |||
| | outputs | | | | |||
| | Loss | | 1.913 | | |||
| | Accuracy | | ACC1[77.57%] ACC5[92.51%] | | |||
| | Total time | | | | |||
| | Params (M) | | | | |||
| | Checkpoint for Fine tuning | | | | |||
| | Model for inference | | | | |||
| | Parameters | MobilenetV3 | | |||
| | -------------------------- | ------------------------- | | |||
| | Model Version | large | | |||
| | Resource | NV SMX2 V100-32G | | |||
| | uploaded Date | 05/06/2020 | | |||
| | MindSpore Version | 0.3.0 | | |||
| | Dataset | ImageNet | | |||
| | Training Parameters | src/config.py | | |||
| | Optimizer | Momentum | | |||
| | Loss Function | SoftmaxCrossEntropy | | |||
| | outputs | | | |||
| | Loss | 1.913 | | |||
| | Accuracy | ACC1[77.57%] ACC5[92.51%] | | |||
| | Total time | | | |||
| | Params (M) | | | |||
| | Checkpoint for Fine tuning | | | |||
| | Model for inference | | | |||
| #### Inference Performance | |||
| | Parameters | | | | | |||
| | -------------------------- | ----------------------------- | ------------------------- | -------------------- | | |||
| | Model Version | V1 | | | | |||
| | Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 | | |||
| | uploaded Date | 05/06/2020 | 05/22/2020 | | | |||
| | MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 | | |||
| | Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W | | |||
| | batch_size | | 130(8P) | | | |||
| | outputs | | | | | |||
| | Accuracy | | ACC1[75.43%] ACC5[92.51%] | | | |||
| | Speed | | | | | |||
| | Total time | | | | | |||
| | Model for inference | | | | | |||
| # ModelZoo Homepage | |||
| [Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo) | |||
| | Parameters | | | |||
| | -------------------------- | -------------------- | | |||
| | Model Version | | | |||
| | Resource | NV SMX2 V100-32G | | |||
| | uploaded Date | 05/22/2020 | | |||
| | MindSpore Version | 0.2.0 | | |||
| | Dataset | ImageNet, 1.2W | | |||
| | batch_size | 130(8P) | | |||
| | outputs | | | |||
| | Accuracy | ACC1[75.43%] ACC5[92.51%] | | |||
| | Speed | | | |||
| | Total time | | | |||
| | Model for inference | | | |||
| # [Description of Random Situation](#contents) | |||
| In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py. | |||
| # [ModelZoo Homepage](#contents) | |||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | |||
| @@ -15,33 +15,26 @@ | |||
| """ | |||
| eval. | |||
| """ | |||
| import os | |||
| import argparse | |||
| from mindspore import context | |||
| from mindspore import nn | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.common import dtype as mstype | |||
| from src.dataset import create_dataset | |||
| from src.config import config_ascend, config_gpu | |||
| from src.config import config_gpu | |||
| from src.mobilenetV3 import mobilenet_v3_large | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| parser.add_argument('--device_target', type=str, default=None, help='run device_target') | |||
| parser.add_argument('--device_target', type=str, default="GPU", help='run device_target') | |||
| args_opt = parser.parse_args() | |||
| if __name__ == '__main__': | |||
| config = None | |||
| if args_opt.device_target == "Ascend": | |||
| config = config_ascend | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||
| device_id=device_id, save_graphs=False) | |||
| elif args_opt.device_target == "GPU": | |||
| if args_opt.device_target == "GPU": | |||
| config = config_gpu | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target="GPU", save_graphs=False) | |||
| @@ -52,12 +45,6 @@ if __name__ == '__main__': | |||
| is_grad=False, sparse=True, reduction='mean') | |||
| net = mobilenet_v3_large(num_classes=config.num_classes) | |||
| if args_opt.device_target == "Ascend": | |||
| net.to_float(mstype.float16) | |||
| for _, cell in net.cells_and_names(): | |||
| if isinstance(cell, nn.Dense): | |||
| cell.to_float(mstype.float32) | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, | |||
| do_train=False, | |||
| config=config, | |||
| @@ -13,7 +13,7 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """train_imagenet.""" | |||
| import os | |||
| import time | |||
| import argparse | |||
| import random | |||
| @@ -47,20 +47,10 @@ de.config.set_seed(1) | |||
| parser = argparse.ArgumentParser(description='Image classification') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') | |||
| parser.add_argument('--device_target', type=str, default=None, help='run device_target') | |||
| parser.add_argument('--device_target', type=str, default="GPU", help='run device_target') | |||
| args_opt = parser.parse_args() | |||
| if args_opt.device_target == "Ascend": | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| rank_id = int(os.getenv('RANK_ID')) | |||
| rank_size = int(os.getenv('RANK_SIZE')) | |||
| run_distribute = rank_size > 1 | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target="Ascend", | |||
| device_id=device_id, | |||
| save_graphs=False) | |||
| elif args_opt.device_target == "GPU": | |||
| if args_opt.device_target == "GPU": | |||
| context.set_context(mode=context.GRAPH_MODE, | |||
| device_target="GPU", | |||
| save_graphs=False) | |||