| @@ -0,0 +1,192 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/cpu/mirror_pad_cpu_kernel.h" | |||||
| #include "runtime/device/cpu/cpu_device_address.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| void MirrorPadCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||||
| std::string mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, "mode"); | |||||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||||
| if (mode == "REFLECT") { | |||||
| mode_ = 0; | |||||
| } else if (mode == "SYMMETRIC") { | |||||
| mode_ = 1; | |||||
| } else { | |||||
| MS_LOG(EXCEPTION) << "For mirror pad, only REFLECT and SYMMETRIC are supported."; | |||||
| } | |||||
| std::vector<size_t> input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| shape_size_ = input_shape.size(); | |||||
| if (shape_size_ == 4) { // shape adjustment from 2d/3d to 4d | |||||
| } else if (shape_size_ == 3) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 1); // batch padding | |||||
| shape_size_ = 4; | |||||
| } else if (shape_size_ == 2) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 2, 1); // channel padding | |||||
| shape_size_ = 4; | |||||
| } | |||||
| for (size_t i = 0; i < shape_size_; ++i) { | |||||
| tensor_size_ *= input_shape[i]; | |||||
| input_shape_.push_back(input_shape[i]); | |||||
| } | |||||
| std::vector<size_t> padding_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||||
| num_paddings_ = padding_shape[0]; | |||||
| auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||||
| for (auto x : output_shape) { | |||||
| output_size_ *= x; | |||||
| output_shape_.push_back(x); | |||||
| } | |||||
| size_t max_width = input_shape_[3]; | |||||
| size_t max_height = input_shape_[2]; | |||||
| if (mode_ == 1) { // symmetric | |||||
| max_width = max_width + (2 * max_width); | |||||
| max_height = max_height + (2 * max_height); | |||||
| } else { // reflect | |||||
| max_width = max_width + (2 * (max_width - 1)); | |||||
| max_height = max_height + (2 * (max_height - 1)); | |||||
| } | |||||
| if (output_shape_[(output_shape_.size() - 2) + 0] > max_height || | |||||
| output_shape_[(output_shape_.size() - 2) + 1] > max_width) { | |||||
| MS_LOG(ERROR) << "ERROR: Padding value too high for input Tensor on 1 or more dims"; | |||||
| } | |||||
| } | |||||
| void extract_paddings(const int64_t *paddings_arg, int padd_dim, int64_t *extracted_paddings) { | |||||
| const int paddings_offset = MAX_PADDINGS - padd_dim; | |||||
| for (int i = 0; i < padd_dim; i++) { | |||||
| extracted_paddings[(paddings_offset + i) * PADDING_SIZE] = paddings_arg[i * PADDING_SIZE]; | |||||
| extracted_paddings[(paddings_offset + i) * PADDING_SIZE + 1] = paddings_arg[i * PADDING_SIZE + 1]; | |||||
| } | |||||
| } | |||||
| bool MirrorPadCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||||
| const std::vector<kernel::AddressPtr> &outputs) { | |||||
| if (dtype_ == kNumberTypeFloat16) { | |||||
| LaunchKernel<float16>(inputs, outputs); | |||||
| } else if (dtype_ == kNumberTypeFloat32) { | |||||
| LaunchKernel<float>(inputs, outputs); | |||||
| } else if (dtype_ == kNumberTypeInt32) { | |||||
| LaunchKernel<int>(inputs, outputs); | |||||
| } else { | |||||
| MS_LOG(EXCEPTION) << "Data type is " << TypeIdLabel(dtype_) << "is not support."; | |||||
| } | |||||
| return true; | |||||
| } | |||||
| template <typename T> | |||||
| void MirrorPadCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) { | |||||
| auto inputs_addr = reinterpret_cast<T *>(inputs[0]->addr); | |||||
| int64_t *paddings_arg = reinterpret_cast<int64_t *>(inputs[1]->addr); | |||||
| auto outputs_addr = reinterpret_cast<T *>(outputs[0]->addr); | |||||
| const int old_batch = input_shape_[0]; | |||||
| const int old_channel = input_shape_[1]; | |||||
| const int old_height = input_shape_[2]; | |||||
| const int old_width = input_shape_[3]; | |||||
| int dim_offset = output_shape_.size() - 2; | |||||
| const int padded_height = output_shape_[dim_offset + 0]; | |||||
| const int padded_width = output_shape_[dim_offset + 1]; | |||||
| const int padd_dim = num_paddings_; | |||||
| const int mode = mode_; | |||||
| int64_t paddings[MAX_PADDINGS * PADDING_SIZE]; // local and fixed size to keep in registers | |||||
| for (int i = 0; i < MAX_PADDINGS * PADDING_SIZE; i++) { | |||||
| paddings[i] = 0; | |||||
| } | |||||
| extract_paddings(paddings_arg, padd_dim, paddings); | |||||
| // Create anchor points for non mirrored data inside new tensor | |||||
| int ap1_x = paddings[WIDTH + LEFT]; | |||||
| int ap2_x = paddings[WIDTH + LEFT] + old_width - 1; | |||||
| int ap1_y = paddings[HEIGHT + TOP]; | |||||
| int ap2_y = paddings[HEIGHT + TOP] + old_height - 1; | |||||
| int ap1_channel = paddings[CHANNEL + LEFT]; | |||||
| int ap2_channel = paddings[CHANNEL + LEFT] + old_channel - 1; | |||||
| int ap1_batch = paddings[BATCH + LEFT]; | |||||
| int ap2_batch = paddings[BATCH + LEFT] + old_batch - 1; | |||||
| int channels_new = old_channel + paddings[CHANNEL + LEFT] + paddings[CHANNEL + RIGHT]; | |||||
| for (size_t pos = 0; pos < output_size_; ++pos) { | |||||
| int block_num = (pos / padded_width) / padded_height; | |||||
| // cur position | |||||
| const int padded_x = pos % padded_width; | |||||
| const int padded_y = (pos / padded_width) % padded_height; | |||||
| const int padded_channel = block_num % channels_new; | |||||
| const int padded_batch = block_num / channels_new; | |||||
| // data to mirror from in new tensor dims | |||||
| int matchval_x_index = padded_x; | |||||
| int matchval_y_index = padded_y; | |||||
| int matchval_channel_index = padded_channel; | |||||
| int matchval_batch_index = padded_batch; | |||||
| int equiv_block_num = 0; | |||||
| // update matching index in original tensor across all 4 dims | |||||
| if ((padded_x < ap1_x) || (padded_x > ap2_x)) { | |||||
| int x_dist = (padded_x < ap1_x) ? (ap1_x - padded_x) : (padded_x - ap2_x); | |||||
| matchval_x_index = (padded_x < ap1_x) ? (ap1_x + x_dist - mode) : (ap2_x - x_dist + mode); | |||||
| } | |||||
| if ((padded_y < ap1_y) || (padded_y > ap2_y)) { | |||||
| int y_dist = (padded_y < ap1_y) ? (ap1_y - padded_y) : (padded_y - ap2_y); | |||||
| matchval_y_index = (padded_y < ap1_y) ? (ap1_y + y_dist - mode) : (ap2_y - y_dist + mode); | |||||
| } | |||||
| if ((padded_channel < ap1_channel) || (padded_channel > ap2_channel)) { | |||||
| int channel_dist = | |||||
| (padded_channel < ap1_channel) ? (ap1_channel - padded_channel) : (padded_channel - ap2_channel); | |||||
| matchval_channel_index = | |||||
| (padded_channel < ap1_channel) ? (ap1_channel + channel_dist - mode) : (ap2_channel - channel_dist + mode); | |||||
| } | |||||
| if ((padded_batch < ap1_batch) || (padded_batch > ap2_batch)) { | |||||
| int batch_dist = (padded_batch < ap1_batch) ? (ap1_batch - padded_batch) : (padded_batch - ap2_batch); | |||||
| matchval_batch_index = | |||||
| (padded_batch < ap1_batch) ? (ap1_batch + batch_dist - mode) : (ap2_batch - batch_dist + mode); | |||||
| } | |||||
| // calculate equivalent block in input | |||||
| equiv_block_num = ((matchval_batch_index - paddings[BATCH + LEFT]) * old_channel) + | |||||
| (matchval_channel_index - paddings[CHANNEL + LEFT]); | |||||
| // copy data from equiv block and adjusted x and y values in unpadded tensor | |||||
| outputs_addr[pos] = | |||||
| inputs_addr[(equiv_block_num * old_height + matchval_y_index - paddings[HEIGHT + TOP]) * old_width + | |||||
| matchval_x_index - paddings[WIDTH + LEFT]]; | |||||
| } | |||||
| } | |||||
| void MirrorPadCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_num != 2) { | |||||
| MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but MirrorPadCPUKernel needs 2 inputs."; | |||||
| } | |||||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||||
| if (output_num != 1) { | |||||
| MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but MirrorPadCPUKernel needs 1 output."; | |||||
| } | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,82 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_CPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_CPU_KERNEL_H_ | |||||
| #include <memory> | |||||
| #include <unordered_map> | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||||
| // preset size of paddings | |||||
| #define MAX_PADDINGS 4 | |||||
| #define PADDING_SIZE 2 | |||||
| // define constants for kernel indexing use | |||||
| #define BATCH 0 * PADDING_SIZE | |||||
| #define CHANNEL 1 * PADDING_SIZE | |||||
| #define HEIGHT 2 * PADDING_SIZE | |||||
| #define WIDTH 3 * PADDING_SIZE | |||||
| #define TOP 0 | |||||
| #define BOTTOM 1 | |||||
| #define LEFT 0 | |||||
| #define RIGHT 1 | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| class MirrorPadCPUKernel : public CPUKernel { | |||||
| public: | |||||
| MirrorPadCPUKernel() = default; | |||||
| ~MirrorPadCPUKernel() override = default; | |||||
| void InitKernel(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) override; | |||||
| template <typename T> | |||||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||||
| private: | |||||
| void CheckParam(const CNodePtr &kernel_node); | |||||
| TypeId dtype_{kTypeUnknown}; | |||||
| uint64_t tensor_size_ = 1; | |||||
| size_t shape_size_; | |||||
| uint64_t output_size_ = 1; | |||||
| std::vector<size_t> input_shape_; | |||||
| std::vector<size_t> output_shape_; | |||||
| int mode_; | |||||
| int num_paddings_; | |||||
| }; | |||||
| MS_REG_CPU_KERNEL( | |||||
| MirrorPad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat16), | |||||
| MirrorPadCPUKernel); | |||||
| MS_REG_CPU_KERNEL( | |||||
| MirrorPad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32), | |||||
| MirrorPadCPUKernel); | |||||
| MS_REG_CPU_KERNEL( | |||||
| MirrorPad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32), | |||||
| MirrorPadCPUKernel); | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_CPU_KERNEL_H_ | |||||
| @@ -0,0 +1,288 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/cpu/mirror_pad_grad_cpu_kernel.h" | |||||
| #include "runtime/device/cpu/cpu_device_address.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| void MirrorPadGradCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||||
| std::string mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, "mode"); | |||||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||||
| if (mode == "REFLECT") { | |||||
| mode_ = 0; | |||||
| } else if (mode == "SYMMETRIC") { | |||||
| mode_ = 1; | |||||
| } else { | |||||
| MS_LOG(EXCEPTION) << "For mirror pad, only REFLECT and SYMMETRIC are supported."; | |||||
| } | |||||
| std::vector<size_t> input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| shape_size_ = input_shape.size(); | |||||
| if (shape_size_ == 4) { // shape adjustment from 2d/3d to 4d | |||||
| } else if (shape_size_ == 3) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 1); // batch padding | |||||
| shape_size_ = 4; | |||||
| } else if (shape_size_ == 2) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 2, 1); // channel padding | |||||
| shape_size_ = 4; | |||||
| } | |||||
| for (size_t i = 0; i < shape_size_; ++i) { | |||||
| tensor_size_ *= input_shape[i]; | |||||
| input_shape_.push_back(input_shape[i]); | |||||
| } | |||||
| std::vector<size_t> padding_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||||
| num_paddings_ = padding_shape[0]; | |||||
| std::vector<size_t> output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||||
| if (output_shape.size() == 4) { | |||||
| } else if (output_shape.size() == 3) { | |||||
| auto it = output_shape.begin(); | |||||
| output_shape.insert(it, 1); // batch padding | |||||
| } else if (output_shape.size() == 2) { | |||||
| auto it = output_shape.begin(); | |||||
| output_shape.insert(it, 2, 1); // channel padding | |||||
| } | |||||
| for (auto x : output_shape) { | |||||
| output_size_ *= x; | |||||
| output_shape_.push_back(x); | |||||
| } | |||||
| for (int i = 0; i < 2; i++) { | |||||
| workspace_size_ *= output_shape[i]; | |||||
| workspace_size_ *= input_shape[i + 2]; | |||||
| } | |||||
| size_t max_width = input_shape_[3]; | |||||
| size_t max_height = input_shape_[2]; | |||||
| // basic error check for padding value | |||||
| if (mode_ == 1) { // symmetric | |||||
| max_width = max_width + (2 * max_width); | |||||
| max_height = max_height + (2 * max_height); | |||||
| } else { // reflect | |||||
| max_width = max_width + (2 * (max_width - 1)); | |||||
| max_height = max_height + (2 * (max_height - 1)); | |||||
| } | |||||
| if (output_shape_[(output_shape_.size() - 2) + 0] > max_height || | |||||
| output_shape_[(output_shape_.size() - 2) + 1] > max_width) { | |||||
| MS_LOG(ERROR) << "ERROR: Padding value too high for input Tensor on 1 or more DIMS"; | |||||
| } | |||||
| } | |||||
| void extract_paddings_(const int64_t *paddings_arg, int padd_dim, int64_t *extracted_paddings) { | |||||
| const int paddings_offset = MAX_PADDINGS - padd_dim; | |||||
| for (int i = 0; i < padd_dim; i++) { | |||||
| extracted_paddings[(paddings_offset + i) * PADDING_SIZE] = paddings_arg[i * PADDING_SIZE]; | |||||
| extracted_paddings[(paddings_offset + i) * PADDING_SIZE + 1] = paddings_arg[i * PADDING_SIZE + 1]; | |||||
| } | |||||
| } | |||||
| bool range_check(int x, int y, int padded_width, int padded_height) { | |||||
| if (((x >= 0) && (x <= padded_width - 1)) && ((y >= 0) && (y <= padded_height - 1))) { | |||||
| return true; | |||||
| } | |||||
| return false; | |||||
| } | |||||
| bool MirrorPadGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||||
| const std::vector<kernel::AddressPtr> &workspace, | |||||
| const std::vector<kernel::AddressPtr> &outputs) { | |||||
| if (dtype_ == kNumberTypeFloat16) { | |||||
| LaunchKernel<float16>(inputs, workspace, outputs); | |||||
| } else if (dtype_ == kNumberTypeFloat32) { | |||||
| LaunchKernel<float>(inputs, workspace, outputs); | |||||
| } else if (dtype_ == kNumberTypeInt32) { | |||||
| LaunchKernel<int>(inputs, workspace, outputs); | |||||
| } else { | |||||
| MS_LOG(EXCEPTION) << "Data type is " << TypeIdLabel(dtype_) << "is not support."; | |||||
| } | |||||
| return true; | |||||
| } | |||||
| template <typename T> | |||||
| void MirrorPadGradCPUKernel::InitWorkspaceSize() { | |||||
| workspace_size_list_.emplace_back(workspace_size_ * sizeof(T)); | |||||
| } | |||||
| void MirrorPadGradCPUKernel::InitInputOutputSize(const CNodePtr &kernel_node) { | |||||
| CPUKernel::InitInputOutputSize(kernel_node); | |||||
| if (dtype_ == kNumberTypeFloat16) { | |||||
| InitWorkspaceSize<float16>(); | |||||
| } else if (dtype_ == kNumberTypeFloat32) { | |||||
| InitWorkspaceSize<float>(); | |||||
| } else if (dtype_ == kNumberTypeInt32) { | |||||
| InitWorkspaceSize<int>(); | |||||
| } | |||||
| } | |||||
| template <typename T> | |||||
| void MirrorPadGradCPUKernel::MirrorPadGrad_Width_Height(const size_t size, const T *dy, T *interim_dy, | |||||
| const int dx_batches, const int dx_channels, | |||||
| const int dx_height, const int dx_width, const int dy_height, | |||||
| const int dy_width, const int padd_dim, | |||||
| const int64_t *paddings_arg, int mode, T *dx) { | |||||
| int64_t paddings[MAX_PADDINGS * PADDING_SIZE]; // local and fixed size to keep in registers | |||||
| for (int i = 0; i < MAX_PADDINGS * PADDING_SIZE; i++) { | |||||
| paddings[i] = 0; // init all to 0 | |||||
| } | |||||
| extract_paddings_(paddings_arg, padd_dim, paddings); | |||||
| // Create required anchor points for non-mirrored data inside new tensor | |||||
| int ap1_x = paddings[WIDTH + LEFT]; | |||||
| int ap2_x = paddings[WIDTH + LEFT] + dx_width - 1; | |||||
| int ap1_y = paddings[HEIGHT + TOP]; | |||||
| int ap2_y = paddings[HEIGHT + TOP] + dx_height - 1; | |||||
| for (size_t pos = 0; pos < size; ++pos) { | |||||
| int dx_block_num = (pos / dx_width) / dx_height; | |||||
| const int grad_x = (pos % dx_width) + paddings[WIDTH + LEFT]; | |||||
| const int grad_y = ((pos / dx_width) % dx_height) + paddings[HEIGHT + TOP]; | |||||
| // copy position's own value into output | |||||
| dx[pos] = interim_dy[(dx_block_num * dy_height + grad_y) * dy_width + grad_x]; | |||||
| int x_dist_1 = (ap1_x - grad_x - mode); | |||||
| int y_dist_1 = (ap1_y - grad_y - mode); | |||||
| int x_dist_2 = (ap2_x - grad_x + mode); | |||||
| int y_dist_2 = (ap2_y - grad_y + mode); | |||||
| int axis_dist[] = {x_dist_1, x_dist_2, y_dist_1, y_dist_2}; | |||||
| int anch_point[] = {ap1_x, ap2_x, ap1_y, ap2_y}; | |||||
| bool x_axis_check[] = {true, true, false, false}; // true - update X , false - update Y | |||||
| int temp_x = 0; | |||||
| int temp_y = 0; | |||||
| // mirroring in axis lines | |||||
| for (int x = 0; x < 4; x++) { | |||||
| if (axis_dist[x] != 0) { | |||||
| if (x_axis_check[x]) { | |||||
| temp_y = grad_y; | |||||
| temp_x = anch_point[x] + axis_dist[x]; | |||||
| } else { | |||||
| temp_x = grad_x; | |||||
| temp_y = anch_point[x] + axis_dist[x]; | |||||
| } | |||||
| if (range_check(temp_x, temp_y, dy_width, dy_height)) { | |||||
| dx[pos] = dx[pos] + interim_dy[(dx_block_num * dy_height + temp_y) * dy_width + temp_x]; | |||||
| } | |||||
| } | |||||
| } | |||||
| // mirroring at corners | |||||
| for (int x = 0; x < 2; x++) { | |||||
| for (int y = 2; y < 4; y++) { | |||||
| if ((axis_dist[x] != 0) && (axis_dist[y] != 0)) { | |||||
| temp_x = anch_point[x] + axis_dist[x]; | |||||
| temp_y = anch_point[y] + axis_dist[y]; | |||||
| if (range_check(temp_x, temp_y, dy_width, dy_height)) { | |||||
| dx[pos] = dx[pos] + interim_dy[(dx_block_num * dy_height + temp_y) * dy_width + temp_x]; | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| } | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| void MirrorPadGradCPUKernel::MirrorPadGradBatchChannel(const size_t size, T *dy, T *interim_dy, const int dx_batches, | |||||
| const int dx_channels, const int dx_height, const int dx_width, | |||||
| const int dy_height, const int dy_width, const int padd_dim, | |||||
| const int64_t *paddings_arg, int mode, T *dx) { | |||||
| int64_t paddings[MAX_PADDINGS * PADDING_SIZE]; // local and fixed size to keep in registers | |||||
| for (int i = 0; i < MAX_PADDINGS * PADDING_SIZE; i++) { | |||||
| paddings[i] = 0; // init all to 0 | |||||
| } | |||||
| extract_paddings_(paddings_arg, padd_dim, paddings); | |||||
| // Create anchor points for non mirrored data inside new tensor | |||||
| int ap1_channel = paddings[CHANNEL + LEFT]; | |||||
| int ap2_channel = paddings[CHANNEL + LEFT] + dx_channels - 1; | |||||
| int ap1_batch = paddings[BATCH + LEFT]; | |||||
| int ap2_batch = paddings[BATCH + LEFT] + dx_batches - 1; | |||||
| int dy_channels = dx_channels + paddings[CHANNEL + LEFT] + paddings[CHANNEL + RIGHT]; | |||||
| int dy_batches = dx_batches + paddings[BATCH + LEFT] + paddings[BATCH + RIGHT]; | |||||
| for (size_t pos = 0; pos < size; ++pos) { | |||||
| int block_num = (pos / dy_width) / dy_height; | |||||
| // Select exact position inside the dy_interim array | |||||
| const int interim_x = pos % dy_width; | |||||
| const int interim_y = (pos / dy_width) % dy_height; | |||||
| const int interim_channel = block_num % dx_channels; | |||||
| const int interim_batch = block_num / dx_channels; | |||||
| interim_dy[pos] = T(0); // init | |||||
| // map cur interim channel and batch to equivalent in padded dy array | |||||
| const int equiv_dy_channel = interim_channel + paddings[CHANNEL + LEFT]; | |||||
| const int equiv_dy_batch = interim_batch + paddings[BATCH + LEFT]; | |||||
| int target_batch = 0; | |||||
| int target_channel = 0; | |||||
| int equiv_block_num = 0; | |||||
| equiv_block_num = ((equiv_dy_batch * dy_channels) + equiv_dy_channel); | |||||
| // generate values to sweep over all possible mirrored points | |||||
| auto batch_offsets = {2 * (ap1_batch - equiv_dy_batch) - mode, 0, 2 * (ap2_batch - equiv_dy_batch) + mode}; | |||||
| auto channel_offsets = {2 * (ap1_channel - equiv_dy_channel) - mode, 0, | |||||
| 2 * (ap2_channel - equiv_dy_channel) + mode}; | |||||
| for (auto b_adjust : batch_offsets) { | |||||
| for (auto c_adjust : channel_offsets) { | |||||
| target_batch = equiv_dy_batch + b_adjust; | |||||
| target_channel = equiv_dy_channel + c_adjust; | |||||
| // bounds check - if within bounds, mirrored value exists - copy dy | |||||
| if ((target_batch < 0) || (target_batch > (dy_batches - 1)) || (target_channel < 0) || | |||||
| (target_channel > (dy_channels - 1))) { | |||||
| continue; // no mirrored value with these target values | |||||
| } | |||||
| equiv_block_num = ((target_batch * dy_channels) + target_channel); | |||||
| // Copy data and set value at input to 0 to avoid duplicates in reflect mode | |||||
| interim_dy[pos] = T(interim_dy[pos] + dy[(equiv_block_num * dy_height + interim_y) * dy_width + interim_x]); | |||||
| dy[(equiv_block_num * dy_height + interim_y) * dy_width + interim_x] = T(0); | |||||
| } | |||||
| } | |||||
| } | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| void MirrorPadGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||||
| const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) { | |||||
| auto inputs_addr = reinterpret_cast<T *>(inputs[0]->addr); | |||||
| int64_t *paddings = reinterpret_cast<int64_t *>(inputs[1]->addr); | |||||
| auto interim = reinterpret_cast<T *>(workspace[0]->addr); | |||||
| auto outputs_addr = reinterpret_cast<T *>(outputs[0]->addr); | |||||
| MirrorPadGradBatchChannel(workspace_size_, inputs_addr, interim, output_shape_[0], output_shape_[1], output_shape_[2], | |||||
| output_shape_[3], input_shape_[2], input_shape_[3], num_paddings_, paddings, mode_, | |||||
| outputs_addr); | |||||
| MirrorPadGrad_Width_Height(output_size_, inputs_addr, interim, output_shape_[0], output_shape_[1], output_shape_[2], | |||||
| output_shape_[3], input_shape_[2], input_shape_[3], num_paddings_, paddings, mode_, | |||||
| outputs_addr); | |||||
| } | |||||
| void MirrorPadGradCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_num != 2) { | |||||
| MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but MirrorPadGradCPUKernel needs 2 inputs."; | |||||
| } | |||||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||||
| if (output_num != 1) { | |||||
| MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but MirrorPadGradCPUKernel needs 1 output."; | |||||
| } | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,100 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_GRAD_CPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_GRAD_CPU_KERNEL_H_ | |||||
| #include <memory> | |||||
| #include <unordered_map> | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||||
| // preset size of paddings | |||||
| #define MAX_PADDINGS 4 | |||||
| #define PADDING_SIZE 2 | |||||
| // define constants for kernel indexing use | |||||
| #define BATCH 0 * PADDING_SIZE | |||||
| #define CHANNEL 1 * PADDING_SIZE | |||||
| #define HEIGHT 2 * PADDING_SIZE | |||||
| #define WIDTH 3 * PADDING_SIZE | |||||
| #define TOP 0 | |||||
| #define BOTTOM 1 | |||||
| #define LEFT 0 | |||||
| #define RIGHT 1 | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| class MirrorPadGradCPUKernel : public CPUKernel { | |||||
| public: | |||||
| MirrorPadGradCPUKernel() = default; | |||||
| ~MirrorPadGradCPUKernel() override = default; | |||||
| void InitKernel(const CNodePtr &kernel_node) override; | |||||
| void InitInputOutputSize(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) override; | |||||
| template <typename T> | |||||
| void InitWorkspaceSize(); | |||||
| template <typename T> | |||||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs); | |||||
| template <typename T> | |||||
| void MirrorPadGrad_Width_Height(const size_t size, const T *dy, T *interim_dy, const int dx_batches, | |||||
| const int dx_channels, const int dx_height, const int dx_width, const int dy_height, | |||||
| const int dy_width, const int padd_dim, const int64_t *paddings_arg, int mode, T *dx); | |||||
| template <typename T> | |||||
| void MirrorPadGradBatchChannel(const size_t size, T *dy, T *interim_dy, const int dx_batches, const int dx_channels, | |||||
| const int dx_height, const int dx_width, const int dy_height, const int dy_width, | |||||
| const int padd_dim, const int64_t *paddings_arg, int mode, T *dx); | |||||
| private: | |||||
| void CheckParam(const CNodePtr &kernel_node); | |||||
| TypeId dtype_{kTypeUnknown}; | |||||
| size_t tensor_size_ = 1; | |||||
| size_t shape_size_; | |||||
| size_t output_size_ = 1; | |||||
| size_t workspace_size_ = 1; | |||||
| std::vector<size_t> input_shape_; | |||||
| std::vector<size_t> output_shape_; | |||||
| int mode_; | |||||
| int num_paddings_; | |||||
| }; | |||||
| MS_REG_CPU_KERNEL( | |||||
| MirrorPadGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat16), | |||||
| MirrorPadGradCPUKernel); | |||||
| MS_REG_CPU_KERNEL( | |||||
| MirrorPadGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32), | |||||
| MirrorPadGradCPUKernel); | |||||
| MS_REG_CPU_KERNEL( | |||||
| MirrorPadGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32), | |||||
| MirrorPadGradCPUKernel); | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MIRROR_PAD_CPU_KERNEL_H_ | |||||
| @@ -0,0 +1,127 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/cpu/pad_cpu_kernel.h" | |||||
| #include "runtime/device/cpu/cpu_device_address.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| void PadCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||||
| paddings_ = AnfAlgo::GetNodeAttr<std::vector<std::vector<int64_t>>>(kernel_node, "paddings"); | |||||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||||
| std::vector<size_t> input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| shape_size_ = input_shape.size(); | |||||
| if (shape_size_ == 4) { // shape adjustment from 2d/3d to 4d | |||||
| } else if (shape_size_ == 3) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 1); // batch padding | |||||
| shape_size_ = 4; | |||||
| } else if (shape_size_ == 2) { | |||||
| auto it = input_shape.begin(); | |||||
| input_shape.insert(it, 2, 1); // channel padding | |||||
| shape_size_ = 4; | |||||
| } | |||||
| for (size_t i = 0; i < shape_size_; ++i) { | |||||
| tensor_size_ *= input_shape[i]; | |||||
| input_shape_.push_back(input_shape[i]); | |||||
| } | |||||
| if (paddings_.size() == 4) { // shape adjustment from 2d/3d to 4d | |||||
| } else if (paddings_.size() == 3) { | |||||
| auto it = paddings_.begin(); | |||||
| paddings_.insert(it, 1, {0, 0}); // batch padding | |||||
| } else if (paddings_.size() == 2) { | |||||
| auto it = paddings_.begin(); | |||||
| paddings_.insert(it, 2, {0, 0}); // channel padding | |||||
| } | |||||
| for (size_t i = 0; i < shape_size_; i++) { | |||||
| size_t temp = input_shape[i] + (paddings_[i][0] + paddings_[i][1]); // compute new dim size | |||||
| output_size_ *= temp; | |||||
| output_shape_.push_back(temp); // correct new dimension size | |||||
| } | |||||
| } | |||||
| bool PadCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||||
| const std::vector<kernel::AddressPtr> &outputs) { | |||||
| if (dtype_ == kNumberTypeFloat16) { | |||||
| LaunchKernel<float16>(inputs, outputs); | |||||
| } else if (dtype_ == kNumberTypeFloat32) { | |||||
| LaunchKernel<float>(inputs, outputs); | |||||
| } else if (dtype_ == kNumberTypeInt32) { | |||||
| LaunchKernel<int>(inputs, outputs); | |||||
| } else { | |||||
| MS_LOG(EXCEPTION) << "Data type is " << TypeIdLabel(dtype_) << "is not support."; | |||||
| } | |||||
| return true; | |||||
| } | |||||
| template <typename T> | |||||
| void PadCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) { | |||||
| auto inputs_addr = reinterpret_cast<T *>(inputs[0]->addr); | |||||
| auto outputs_addr = reinterpret_cast<T *>(outputs[0]->addr); | |||||
| const int pad_left = paddings_[3][0]; | |||||
| const int pad_top = paddings_[2][0]; | |||||
| const int pad_channel_before = paddings_[1][0]; | |||||
| const int pad_channel_after = paddings_[1][1]; | |||||
| const T pad_value = T(0); | |||||
| // const int num = input_shape_[0]; | |||||
| const int channels_orig = input_shape_[1]; | |||||
| const int old_height = input_shape_[2]; | |||||
| const int old_width = input_shape_[3]; | |||||
| const int padded_height = output_shape_[2]; | |||||
| const int padded_width = output_shape_[3]; | |||||
| for (size_t pos = 0; pos < output_size_; ++pos) { | |||||
| int block_num = (pos / padded_width) / padded_height; | |||||
| const int padded_w = pos % padded_width; // x coordinate referred to by cur 'pos' | |||||
| const int padded_h = (pos / padded_width) % padded_height; // y coordinate referred to by cur 'pos' | |||||
| int channels_new = channels_orig + pad_channel_after + pad_channel_before; // new number of channels from padding | |||||
| int channel_num = block_num % channels_new; // current channel | |||||
| int batch_item = block_num / channels_new; // current item in batch | |||||
| if (padded_h - pad_top < 0 || padded_w - pad_left < 0 || padded_h - pad_top >= old_height || | |||||
| padded_w - pad_left >= old_width || channel_num <= pad_channel_before - 1 || | |||||
| channel_num > channels_orig + pad_channel_before - 1) { | |||||
| outputs_addr[pos] = pad_value; | |||||
| } else { | |||||
| // on a block/x,y position that isn't padding, copy data from the correct block/x,y pos the input | |||||
| // calculate from number of blocks of padding (due to channel padding) inserted prior | |||||
| int equiv_block_num = block_num - (batch_item * (pad_channel_before + pad_channel_after)) - pad_channel_before; | |||||
| outputs_addr[pos] = | |||||
| inputs_addr[(equiv_block_num * old_height + padded_h - pad_top) * old_width + padded_w - pad_left]; | |||||
| } | |||||
| } | |||||
| } | |||||
| void PadCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||||
| if (input_num != 1) { | |||||
| MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but PadCPUKernel needs 1 input."; | |||||
| } | |||||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||||
| if (output_num != 1) { | |||||
| MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but PadCPUKernel needs 1 output."; | |||||
| } | |||||
| } | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,58 @@ | |||||
| /** | |||||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_PAD_CPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_PAD_CPU_KERNEL_H_ | |||||
| #include <memory> | |||||
| #include <unordered_map> | |||||
| #include <vector> | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| class PadCPUKernel : public CPUKernel { | |||||
| public: | |||||
| PadCPUKernel() = default; | |||||
| ~PadCPUKernel() override = default; | |||||
| void InitKernel(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs) override; | |||||
| template <typename T> | |||||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||||
| private: | |||||
| void CheckParam(const CNodePtr &kernel_node); | |||||
| std::vector<std::vector<int64_t>> paddings_; | |||||
| TypeId dtype_{kTypeUnknown}; | |||||
| uint64_t tensor_size_ = 1; | |||||
| size_t shape_size_ = 1; | |||||
| uint64_t output_size_ = 1; | |||||
| std::vector<size_t> input_shape_; | |||||
| std::vector<size_t> output_shape_; | |||||
| }; | |||||
| MS_REG_CPU_KERNEL(Pad, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), PadCPUKernel); | |||||
| MS_REG_CPU_KERNEL(Pad, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), PadCPUKernel); | |||||
| MS_REG_CPU_KERNEL(Pad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), PadCPUKernel); | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_PAD_CPU_KERNEL_H_ | |||||
| @@ -53,8 +53,11 @@ class SliceCPUKernel : public CPUKernel { | |||||
| MS_REG_CPU_KERNEL(Slice, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | MS_REG_CPU_KERNEL(Slice, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | ||||
| SliceCPUKernel); | SliceCPUKernel); | ||||
| MS_REG_CPU_KERNEL(Slice, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), SliceCPUKernel); | |||||
| MS_REG_CPU_KERNEL(StridedSlice, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | MS_REG_CPU_KERNEL(StridedSlice, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | ||||
| SliceCPUKernel); | SliceCPUKernel); | ||||
| MS_REG_CPU_KERNEL(StridedSlice, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||||
| SliceCPUKernel); | |||||
| } // namespace kernel | } // namespace kernel | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -0,0 +1,169 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import pytest | |||||
| import numpy as np | |||||
| import mindspore | |||||
| import mindspore.nn as nn | |||||
| import mindspore.context as context | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops.composite import GradOperation | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mirror_pad(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| test1_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] | |||||
| test_1_paddings = ((0, 0), (0, 0), (1, 1), (2, 2)) | |||||
| test1_arr_exp = [[[[6, 5, 4, 5, 6, 5, 4], [3, 2, 1, 2, 3, 2, 1], [6, 5, 4, 5, 6, 5, 4], | |||||
| [9, 8, 7, 8, 9, 8, 7], [6, 5, 4, 5, 6, 5, 4]]]] | |||||
| test2_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] | |||||
| test_2_paddings = ((0, 0), (0, 0), (1, 1), (2, 2)) | |||||
| test2_arr_exp = [[[[2, 1, 1, 2, 3, 3, 2], [2, 1, 1, 2, 3, 3, 2], [5, 4, 4, 5, 6, 6, 5], | |||||
| [8, 7, 7, 8, 9, 9, 8], [8, 7, 7, 8, 9, 9, 8]]]] | |||||
| reflectOp = nn.Pad(mode='REFLECT', paddings=test_1_paddings) | |||||
| symmOp = nn.Pad(mode='SYMMETRIC', paddings=test_2_paddings) | |||||
| x_test_1 = Tensor(np.array(test1_arr_in), dtype=mindspore.float32) | |||||
| x_test_2 = Tensor(np.array(test2_arr_in), dtype=mindspore.float32) | |||||
| y_test_1 = reflectOp(x_test_1).asnumpy() | |||||
| y_test_2 = symmOp(x_test_2).asnumpy() | |||||
| print(np.array(test1_arr_in)) | |||||
| print(y_test_1) | |||||
| np.testing.assert_equal(np.array(test1_arr_exp), y_test_1) | |||||
| np.testing.assert_equal(np.array(test2_arr_exp), y_test_2) | |||||
| class Grad(nn.Cell): | |||||
| def __init__(self, network): | |||||
| super(Grad, self).__init__() | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | |||||
| def construct(self, input_, output_grad): | |||||
| return self.grad(self.network)(input_, output_grad) | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, pads, mode_): | |||||
| super(Net, self).__init__() | |||||
| self.pad = nn.Pad(mode=mode_, paddings=pads) | |||||
| def construct(self, x): | |||||
| return self.pad(x) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mirror_pad_backprop(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| test_arr_in = [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]] # size -> 3*3 | |||||
| test_arr_in = Tensor(test_arr_in, dtype=mindspore.float32) | |||||
| dy = (np.ones((1, 1, 4, 5)) * 0.1).astype(np.float32) | |||||
| expected_dx = np.array([[[[0.2, 0.2, 0.1], | |||||
| [0.4, 0.4, 0.2], | |||||
| [0.2, 0.2, 0.1]]]]) | |||||
| net = Grad(Net(((0, 0), (0, 0), (1, 0), (0, 2)), "REFLECT")) | |||||
| dx = net(test_arr_in, Tensor(dy)) | |||||
| dx = dx[0].asnumpy() | |||||
| np.testing.assert_array_almost_equal(dx, expected_dx) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mirror_pad_fwd_back_4d_int32_reflect(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| # set constants | |||||
| shape = (2, 3, 3, 5) | |||||
| pads = ((1, 0), (2, 0), (1, 2), (3, 4)) | |||||
| total_val = np.prod(shape) | |||||
| test_arr_np = np.arange(total_val).reshape(shape) + 1 | |||||
| test_arr_ms = Tensor(test_arr_np, dtype=mindspore.int32) | |||||
| # fwd_pass_check | |||||
| op = nn.Pad(mode="REFLECT", paddings=pads) | |||||
| expected_np_result = np.pad(test_arr_np, pads, 'reflect') | |||||
| obtained_ms_res = op(test_arr_ms).asnumpy() | |||||
| np.testing.assert_array_equal(expected_np_result, obtained_ms_res) | |||||
| # backwards pass check | |||||
| GradNet = Grad(Net(pads, "REFLECT")) | |||||
| dy_value = Tensor(np.ones(obtained_ms_res.shape), dtype=mindspore.int32) | |||||
| dx_value_obtained = GradNet(test_arr_ms, dy_value)[0].asnumpy() | |||||
| dx_value_expected = np.array([[[[4, 6, 6, 6, 2], | |||||
| [6, 9, 9, 9, 3], | |||||
| [2, 3, 3, 3, 1]], | |||||
| [[8, 12, 12, 12, 4], | |||||
| [12, 18, 18, 18, 6], | |||||
| [4, 6, 6, 6, 2]], | |||||
| [[8, 12, 12, 12, 4], | |||||
| [12, 18, 18, 18, 6], | |||||
| [4, 6, 6, 6, 2]]], | |||||
| [[[8, 12, 12, 12, 4], | |||||
| [12, 18, 18, 18, 6], | |||||
| [4, 6, 6, 6, 2]], | |||||
| [[16, 24, 24, 24, 8], | |||||
| [24, 36, 36, 36, 12], | |||||
| [8, 12, 12, 12, 4]], | |||||
| [[16, 24, 24, 24, 8], | |||||
| [24, 36, 36, 36, 12], | |||||
| [8, 12, 12, 12, 4]]]], dtype=np.int32) | |||||
| np.testing.assert_array_equal(dx_value_expected, dx_value_obtained) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mirror_pad_fwd_back_4d_int32_symm(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| # set constants | |||||
| shape = (2, 3, 3, 5) | |||||
| pads = ((1, 0), (2, 0), (1, 2), (3, 4)) | |||||
| total_val = np.prod(shape) | |||||
| test_arr_np = np.arange(total_val).reshape(shape) + 1 | |||||
| test_arr_ms = Tensor(test_arr_np, dtype=mindspore.int32) | |||||
| # fwd_pass_check | |||||
| op = nn.Pad(mode="SYMMETRIC", paddings=pads) | |||||
| expected_np_result = np.pad(test_arr_np, pads, 'symmetric') | |||||
| obtained_ms_res = op(test_arr_ms).asnumpy() | |||||
| np.testing.assert_array_equal(expected_np_result, obtained_ms_res) | |||||
| # backwards pass check | |||||
| GradNet = Grad(Net(pads, "SYMMETRIC")) | |||||
| dy_value = Tensor(np.ones(obtained_ms_res.shape), dtype=mindspore.int32) | |||||
| dx_value_obtained = GradNet(test_arr_ms, dy_value)[0].asnumpy() | |||||
| dx_value_expected = np.array([[[[16, 24, 24, 16, 16], | |||||
| [16, 24, 24, 16, 16], | |||||
| [16, 24, 24, 16, 16]], | |||||
| [[16, 24, 24, 16, 16], | |||||
| [16, 24, 24, 16, 16], | |||||
| [16, 24, 24, 16, 16]], | |||||
| [[8, 12, 12, 8, 8], | |||||
| [8, 12, 12, 8, 8], | |||||
| [8, 12, 12, 8, 8]]], | |||||
| [[[8, 12, 12, 8, 8], | |||||
| [8, 12, 12, 8, 8], | |||||
| [8, 12, 12, 8, 8]], | |||||
| [[8, 12, 12, 8, 8], | |||||
| [8, 12, 12, 8, 8], | |||||
| [8, 12, 12, 8, 8]], | |||||
| [[4, 6, 6, 4, 4], | |||||
| [4, 6, 6, 4, 4], | |||||
| [4, 6, 6, 4, 4]]]], dtype=np.int32) | |||||
| np.testing.assert_array_equal(dx_value_expected, dx_value_obtained) | |||||
| @@ -0,0 +1,251 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import pytest | |||||
| import numpy as np | |||||
| import mindspore | |||||
| import mindspore.nn as nn | |||||
| import mindspore.context as context | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops.composite import GradOperation | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_pad_basic(): | |||||
| """ | |||||
| Test array is being padded with 0's | |||||
| """ | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| # float32 | |||||
| test_arr = np.array([[1, 2], [3, 4]]).astype(np.float32) | |||||
| test_arr_expected = np.array( | |||||
| [[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]).astype(np.float32) | |||||
| x_test = Tensor(test_arr, dtype=mindspore.float32) | |||||
| pad_op = nn.Pad(mode='CONSTANT', paddings=((1, 1), (1, 1))) | |||||
| y_test = pad_op(x_test).asnumpy() | |||||
| np.testing.assert_array_equal(y_test, test_arr_expected) | |||||
| # float16 | |||||
| test_arr = np.array([[1, 2], [3, 4]]).astype(np.float16) | |||||
| test_arr_expected = np.array( | |||||
| [[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]).astype(np.float16) | |||||
| x_test = Tensor(test_arr, dtype=mindspore.float16) | |||||
| pad_op = nn.Pad(mode='CONSTANT', paddings=((1, 1), (1, 1))) | |||||
| y_test = pad_op(x_test).asnumpy() | |||||
| np.testing.assert_array_equal(y_test, test_arr_expected) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_pad_row(): | |||||
| """ | |||||
| Test correct row padding | |||||
| """ | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU") | |||||
| test_arr_1 = np.random.rand(40, 40).astype(np.float32) | |||||
| test_paddings_1 = ((2, 3), (0, 0)) | |||||
| test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32) | |||||
| test_paddings_2 = ((0, 0), (0, 0), (3, 0), (0, 0)) | |||||
| pad_op_row_1 = nn.Pad(mode='CONSTANT', paddings=test_paddings_1) | |||||
| pad_op_row_2 = nn.Pad(mode='CONSTANT', paddings=test_paddings_2) | |||||
| x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32) | |||||
| x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32) | |||||
| y_test_1 = pad_op_row_1(x_test_1).asnumpy() | |||||
| y_test_2 = pad_op_row_2(x_test_2).asnumpy() | |||||
| # check size | |||||
| assert y_test_1.shape == (45, 40) | |||||
| assert y_test_2.shape == (3, 10, 33, 30) | |||||
| # check values - select correct sections | |||||
| np.testing.assert_equal(y_test_1[2:-3, :], test_arr_1) | |||||
| np.testing.assert_equal(y_test_2[:, :, 3:, :], test_arr_2) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_pad_column(): | |||||
| """ | |||||
| Test correct column padding | |||||
| """ | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| test_arr_1 = np.random.randn(40, 40).astype(np.float32) | |||||
| test_paddings_1 = ((0, 0), (3, 3)) | |||||
| test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32) | |||||
| test_paddings_2 = ((0, 0), (0, 0), (0, 0), (6, 1)) | |||||
| pad_op_col_1 = nn.Pad(mode='CONSTANT', paddings=test_paddings_1) | |||||
| pad_op_col_2 = nn.Pad(mode='CONSTANT', paddings=test_paddings_2) | |||||
| x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32) | |||||
| x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32) | |||||
| y_test_1 = pad_op_col_1(x_test_1).asnumpy() | |||||
| y_test_2 = pad_op_col_2(x_test_2).asnumpy() | |||||
| # check size | |||||
| assert y_test_1.shape == (40, 46) | |||||
| assert y_test_2.shape == (3, 10, 30, 37) | |||||
| # check values - select correct sections - should match | |||||
| np.testing.assert_equal(y_test_1[:, 3:-3], test_arr_1) | |||||
| np.testing.assert_equal(y_test_2[:, :, :, 6:-1], test_arr_2) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_pad_3d_pad(): | |||||
| """ | |||||
| Test full 3d padding, with all 3 input types | |||||
| """ | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| # float32 | |||||
| test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32) | |||||
| test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2)) # padding 3 dims now | |||||
| pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings) | |||||
| x_test = Tensor(np.array(test_arr), dtype=mindspore.float32) | |||||
| y_test = pad_op_3d(x_test).asnumpy() | |||||
| assert y_test.shape == (5, 6, 31, 32) | |||||
| np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2]) | |||||
| # float16 | |||||
| test_arr = np.random.randn(5, 3, 30, 30).astype(np.float16) | |||||
| test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2)) | |||||
| pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings) | |||||
| x_test = Tensor(np.array(test_arr), dtype=mindspore.float16) | |||||
| y_test = pad_op_3d(x_test).asnumpy() | |||||
| assert y_test.shape == (5, 6, 31, 32) | |||||
| np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2]) | |||||
| # int32 | |||||
| test_arr = np.random.randint(1, 3000, (5, 3, 30, 30)).astype(np.int32) | |||||
| test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2)) | |||||
| pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings) | |||||
| x_test = Tensor(np.array(test_arr), dtype=mindspore.int32) | |||||
| y_test = pad_op_3d(x_test).asnumpy() | |||||
| assert y_test.shape == (5, 6, 31, 32) | |||||
| np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2]) | |||||
| # For testing backprop | |||||
| class Grad(nn.Cell): | |||||
| def __init__(self, network): | |||||
| super(Grad, self).__init__() | |||||
| self.grad = GradOperation(get_all=True, sens_param=True) | |||||
| self.network = network | |||||
| def construct(self, input_, output_grad): | |||||
| return self.grad(self.network)(input_, output_grad) | |||||
| class Net(nn.Cell): | |||||
| def __init__(self): | |||||
| super(Net, self).__init__() | |||||
| self.pad = nn.Pad(mode="CONSTANT", paddings=( | |||||
| (0, 0), (4, 3), (1, 1), (0, 2))) | |||||
| def construct(self, x): | |||||
| return self.pad(x) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_pad_3d_backprop(): | |||||
| """ | |||||
| Confirm correct 3d padding backprop | |||||
| """ | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| net = Grad(Net()) | |||||
| padded_shape = (5, 10, 32, 32) | |||||
| # float32 | |||||
| test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32) | |||||
| x_test = Tensor(test_arr, dtype=mindspore.float32) | |||||
| dy = np.random.randn(*padded_shape).astype(np.float32) | |||||
| expected_dx = dy[:, 4:-3, 1:-1, :-2] | |||||
| dx = net(x_test, Tensor(dy)) | |||||
| dx = dx[0].asnumpy() | |||||
| np.testing.assert_array_equal(dx, expected_dx) | |||||
| # float16 | |||||
| test_arr = np.random.randn(5, 3, 30, 30).astype(np.float16) | |||||
| x_test = Tensor(test_arr, dtype=mindspore.float16) | |||||
| dy = np.random.randn(*padded_shape).astype(np.float16) | |||||
| expected_dx = dy[:, 4:-3, 1:-1, :-2] | |||||
| dx = net(x_test, Tensor(dy)) | |||||
| dx = dx[0].asnumpy() | |||||
| np.testing.assert_array_equal(dx, expected_dx) | |||||
| # int32 | |||||
| test_arr = np.random.randint(1, 3000, (5, 3, 30, 30)).astype(np.int32) | |||||
| x_test = Tensor(test_arr, dtype=mindspore.int32) | |||||
| dy = np.random.randn(*padded_shape).astype(np.int32) | |||||
| expected_dx = dy[:, 4:-3, 1:-1, :-2] | |||||
| dx = net(x_test, Tensor(dy)) | |||||
| dx = dx[0].asnumpy() | |||||
| np.testing.assert_array_equal(dx, expected_dx) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_cpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_pad_error_cases(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
| # TEST 1 - Neg padding values | |||||
| test_op = nn.Pad(paddings=((0, 0), (-1, -1)), mode="CONSTANT") | |||||
| test_arr = np.random.randn(3, 3) | |||||
| test_arr_ms = Tensor(test_arr, dtype=mindspore.float32) | |||||
| with pytest.raises(ValueError): | |||||
| test_op(test_arr_ms) | |||||
| # TEST 2 - Mismatched input size and paddings - 1D tensor | |||||
| test_op = nn.Pad(paddings=((0, 0), (1, 0)), mode="CONSTANT") | |||||
| test_arr = np.random.randn(3) # 1D Tensor | |||||
| test_arr_ms = Tensor(test_arr, dtype=mindspore.float32) | |||||
| with pytest.raises(ValueError): | |||||
| test_op(test_arr_ms) | |||||
| # TEST 3 - Mismatched input size and paddings - 2D tensor, 3D padding | |||||
| test_op = nn.Pad(paddings=((0, 0), (1, 0)), mode="CONSTANT") # 2D Padding | |||||
| test_arr = np.random.randn(1, 3, 3) # 3D Tensor | |||||
| test_arr_ms = Tensor(test_arr, dtype=mindspore.float32) | |||||
| with pytest.raises(ValueError): | |||||
| test_op(test_arr_ms) | |||||
| # TEST 4 - 1D Paddings should not work | |||||
| with pytest.raises(TypeError): | |||||
| test_op = nn.Pad(paddings=((0, 2)), mode="CONSTANT") | |||||
| # TEST 5 - Padding beyond 4d - (added check in nn file in PR) | |||||
| with pytest.raises(ValueError): | |||||
| _ = nn.Pad(paddings=((0, 0), (0, 0,), (0, 0), (0, 0), | |||||
| (1, 0)), mode="CONSTANT") # 2D Padding | |||||