|
|
|
@@ -80,7 +80,7 @@ def test_layernormgrad0(): |
|
|
|
gamma_ms = Tensor(gamma_np) |
|
|
|
|
|
|
|
net = LayerNormGradNet(begin_norm_axis, begin_params_axis) |
|
|
|
dx_ms, dg_ms, db_ms = net(dy_ms, x_ms, var_ms, mean_ms, gamma_ms) |
|
|
|
dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms) |
|
|
|
|
|
|
|
assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-6, atol=1e-6) |
|
|
|
assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-6, atol=1e-3) |
|
|
|
@@ -107,7 +107,7 @@ def test_layernormgrad1(): |
|
|
|
gamma_ms = Tensor(gamma_np) |
|
|
|
|
|
|
|
net = LayerNormGradNet(begin_norm_axis, begin_params_axis) |
|
|
|
dx_ms, dg_ms, db_ms = net(dy_ms, x_ms, var_ms, mean_ms, gamma_ms) |
|
|
|
dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms) |
|
|
|
|
|
|
|
assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-6, atol=1e-6) |
|
|
|
assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-6, atol=1e-3) |
|
|
|
@@ -133,8 +133,8 @@ def test_layernormgrad2(): |
|
|
|
gamma_ms = Tensor(gamma_np) |
|
|
|
|
|
|
|
net = LayerNormGradNet(begin_norm_axis, begin_params_axis) |
|
|
|
dx_ms, dg_ms, db_ms = net(dy_ms, x_ms, var_ms, mean_ms, gamma_ms) |
|
|
|
dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms) |
|
|
|
|
|
|
|
assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-6, atol=1e-6) |
|
|
|
assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-6, atol=1e-3) |
|
|
|
assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-6, atol=1e-3) |
|
|
|
assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-6, atol=1e-3) |