| @@ -0,0 +1,88 @@ | |||||
| # SSD Example | |||||
| ## Description | |||||
| SSD network based on MobileNetV2, with support for training and evaluation. | |||||
| ## Requirements | |||||
| - Install [MindSpore](https://www.mindspore.cn/install/en). | |||||
| - Dataset | |||||
| We use coco2017 as training dataset in this example by default, and you can also use your own datasets. | |||||
| 1. If coco dataset is used. **Select dataset to coco when run script.** | |||||
| Download coco2017: [train2017](http://images.cocodataset.org/zips/train2017.zip), [val2017](http://images.cocodataset.org/zips/val2017.zip), [test2017](http://images.cocodataset.org/zips/test2017.zip), [annotations](http://images.cocodataset.org/annotations/annotations_trainval2017.zip). Install pycocotool. | |||||
| ``` | |||||
| pip install Cython | |||||
| pip install pycocotools | |||||
| ``` | |||||
| And change the COCO_ROOT and other settings you need in `config.py`. The directory structure is as follows: | |||||
| ``` | |||||
| └─coco2017 | |||||
| ├── annotations # annotation jsons | |||||
| ├── train2017 # train dataset | |||||
| └── val2017 # infer dataset | |||||
| ``` | |||||
| 2. If your own dataset is used. **Select dataset to other when run script.** | |||||
| Organize the dataset infomation into a TXT file, each row in the file is as follows: | |||||
| ``` | |||||
| train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2 | |||||
| ``` | |||||
| Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the `IMAGE_DIR`(dataset directory) and the relative path in `ANNO_PATH`(the TXT file path), `IMAGE_DIR` and `ANNO_PATH` are setting in `config.py`. | |||||
| ## Running the example | |||||
| ### Training | |||||
| To train the model, run `train.py`. If the `MINDRECORD_DIR` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/converting_datasets.html) files by `COCO_ROOT`(coco dataset) or `IMAGE_DIR` and `ANNO_PATH`(own dataset). **Note if MINDRECORD_DIR isn't empty, it will use MINDRECORD_DIR instead of raw images.** | |||||
| - Stand alone mode | |||||
| ``` | |||||
| python train.py --dataset coco | |||||
| ``` | |||||
| You can run ```python train.py -h``` to get more information. | |||||
| - Distribute mode | |||||
| ``` | |||||
| sh run_distribute_train.sh 8 150 coco /data/hccl.json | |||||
| ``` | |||||
| The input parameters are device numbers, epoch size, dataset mode and [hccl json configuration file](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). **It is better to use absolute path.** | |||||
| You will get the loss value of each step as following: | |||||
| ``` | |||||
| epoch: 1 step: 455, loss is 5.8653416 | |||||
| epoch: 2 step: 455, loss is 5.4292373 | |||||
| epoch: 3 step: 455, loss is 5.458992 | |||||
| ... | |||||
| epoch: 148 step: 455, loss is 1.8340507 | |||||
| epoch: 149 step: 455, loss is 2.0876894 | |||||
| epoch: 150 step: 455, loss is 2.239692 | |||||
| ``` | |||||
| ### Evaluation | |||||
| for evaluation , run `eval.py` with `ckpt_path`. `ckpt_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html) file. | |||||
| ``` | |||||
| python eval.py --ckpt_path ssd.ckpt --dataset coco | |||||
| ``` | |||||
| You can run ```python eval.py -h``` to get more information. | |||||
| @@ -0,0 +1,64 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Config parameters for SSD models.""" | |||||
| class ConfigSSD: | |||||
| """ | |||||
| Config parameters for SSD. | |||||
| Examples: | |||||
| ConfigSSD(). | |||||
| """ | |||||
| IMG_SHAPE = [300, 300] | |||||
| NUM_SSD_BOXES = 1917 | |||||
| NEG_PRE_POSITIVE = 3 | |||||
| MATCH_THRESHOLD = 0.5 | |||||
| NUM_DEFAULT = [3, 6, 6, 6, 6, 6] | |||||
| EXTRAS_IN_CHANNELS = [256, 576, 1280, 512, 256, 256] | |||||
| EXTRAS_OUT_CHANNELS = [576, 1280, 512, 256, 256, 128] | |||||
| EXTRAS_STRIDES = [1, 1, 2, 2, 2, 2] | |||||
| EXTRAS_RATIO = [0.2, 0.2, 0.2, 0.25, 0.5, 0.25] | |||||
| FEATURE_SIZE = [19, 10, 5, 3, 2, 1] | |||||
| SCALES = [21, 45, 99, 153, 207, 261, 315] | |||||
| ASPECT_RATIOS = [(1,), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3)] | |||||
| STEPS = (16, 32, 64, 100, 150, 300) | |||||
| PRIOR_SCALING = (0.1, 0.2) | |||||
| # `MINDRECORD_DIR` and `COCO_ROOT` are better to use absolute path. | |||||
| MINDRECORD_DIR = "MindRecord_COCO" | |||||
| COCO_ROOT = "coco2017" | |||||
| TRAIN_DATA_TYPE = "train2017" | |||||
| VAL_DATA_TYPE = "val2017" | |||||
| INSTANCES_SET = "annotations/instances_{}.json" | |||||
| COCO_CLASSES = ('background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | |||||
| 'train', 'truck', 'boat', 'traffic light', 'fire', 'hydrant', | |||||
| 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', | |||||
| 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', | |||||
| 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', | |||||
| 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', | |||||
| 'kite', 'baseball bat', 'baseball glove', 'skateboard', | |||||
| 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', | |||||
| 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', | |||||
| 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', | |||||
| 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', | |||||
| 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', | |||||
| 'keyboard', 'cell phone', 'microwave oven', 'toaster', 'sink', | |||||
| 'refrigerator', 'book', 'clock', 'vase', 'scissors', | |||||
| 'teddy bear', 'hair drier', 'toothbrush') | |||||
| NUM_CLASSES = len(COCO_CLASSES) | |||||
| @@ -0,0 +1,375 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """SSD dataset""" | |||||
| from __future__ import division | |||||
| import os | |||||
| import math | |||||
| import itertools as it | |||||
| import numpy as np | |||||
| import cv2 | |||||
| import mindspore.dataset as de | |||||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||||
| from mindspore.mindrecord import FileWriter | |||||
| from config import ConfigSSD | |||||
| config = ConfigSSD() | |||||
| class GeneratDefaultBoxes(): | |||||
| """ | |||||
| Generate Default boxes for SSD, follows the order of (W, H, archor_sizes). | |||||
| `self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [x, y, w, h]. | |||||
| `self.default_boxes_ltrb` has a shape as `self.default_boxes`, the last dimension is [x1, y1, x2, y2]. | |||||
| """ | |||||
| def __init__(self): | |||||
| fk = config.IMG_SHAPE[0] / np.array(config.STEPS) | |||||
| self.default_boxes = [] | |||||
| for idex, feature_size in enumerate(config.FEATURE_SIZE): | |||||
| sk1 = config.SCALES[idex] / config.IMG_SHAPE[0] | |||||
| sk2 = config.SCALES[idex + 1] / config.IMG_SHAPE[0] | |||||
| sk3 = math.sqrt(sk1 * sk2) | |||||
| if config.NUM_DEFAULT[idex] == 3: | |||||
| all_sizes = [(0.5, 1.0), (1.0, 1.0), (1.0, 0.5)] | |||||
| else: | |||||
| all_sizes = [(sk1, sk1), (sk3, sk3)] | |||||
| for aspect_ratio in config.ASPECT_RATIOS[idex]: | |||||
| w, h = sk1 * math.sqrt(aspect_ratio), sk1 / math.sqrt(aspect_ratio) | |||||
| all_sizes.append((w, h)) | |||||
| all_sizes.append((h, w)) | |||||
| assert len(all_sizes) == config.NUM_DEFAULT[idex] | |||||
| for i, j in it.product(range(feature_size), repeat=2): | |||||
| for w, h in all_sizes: | |||||
| cx, cy = (j + 0.5) / fk[idex], (i + 0.5) / fk[idex] | |||||
| box = [np.clip(k, 0, 1) for k in (cx, cy, w, h)] | |||||
| self.default_boxes.append(box) | |||||
| def to_ltrb(cx, cy, w, h): | |||||
| return cx - w / 2, cy - h / 2, cx + w / 2, cy + h / 2 | |||||
| # For IoU calculation | |||||
| self.default_boxes_ltrb = np.array(tuple(to_ltrb(*i) for i in self.default_boxes), dtype='float32') | |||||
| self.default_boxes = np.array(self.default_boxes, dtype='float32') | |||||
| default_boxes_ltrb = GeneratDefaultBoxes().default_boxes_ltrb | |||||
| default_boxes = GeneratDefaultBoxes().default_boxes | |||||
| x1, y1, x2, y2 = np.split(default_boxes_ltrb[:, :4], 4, axis=-1) | |||||
| vol_anchors = (x2 - x1) * (y2 - y1) | |||||
| matching_threshold = config.MATCH_THRESHOLD | |||||
| def ssd_bboxes_encode(boxes): | |||||
| """ | |||||
| Labels anchors with ground truth inputs. | |||||
| Args: | |||||
| boxex: ground truth with shape [N, 5], for each row, it stores [x, y, w, h, cls]. | |||||
| Returns: | |||||
| gt_loc: location ground truth with shape [num_anchors, 4]. | |||||
| gt_label: class ground truth with shape [num_anchors, 1]. | |||||
| num_matched_boxes: number of positives in an image. | |||||
| """ | |||||
| def jaccard_with_anchors(bbox): | |||||
| """Compute jaccard score a box and the anchors.""" | |||||
| # Intersection bbox and volume. | |||||
| xmin = np.maximum(x1, bbox[0]) | |||||
| ymin = np.maximum(y1, bbox[1]) | |||||
| xmax = np.minimum(x2, bbox[2]) | |||||
| ymax = np.minimum(y2, bbox[3]) | |||||
| w = np.maximum(xmax - xmin, 0.) | |||||
| h = np.maximum(ymax - ymin, 0.) | |||||
| # Volumes. | |||||
| inter_vol = h * w | |||||
| union_vol = vol_anchors + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) - inter_vol | |||||
| jaccard = inter_vol / union_vol | |||||
| return np.squeeze(jaccard) | |||||
| pre_scores = np.zeros((config.NUM_SSD_BOXES), dtype=np.float32) | |||||
| t_boxes = np.zeros((config.NUM_SSD_BOXES, 4), dtype=np.float32) | |||||
| t_label = np.zeros((config.NUM_SSD_BOXES), dtype=np.int64) | |||||
| for bbox in boxes: | |||||
| label = int(bbox[4]) | |||||
| scores = jaccard_with_anchors(bbox) | |||||
| mask = (scores > matching_threshold) | |||||
| if not np.any(mask): | |||||
| mask[np.argmax(scores)] = True | |||||
| mask = mask & (scores > pre_scores) | |||||
| pre_scores = np.maximum(pre_scores, scores) | |||||
| t_label = mask * label + (1 - mask) * t_label | |||||
| for i in range(4): | |||||
| t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i] | |||||
| index = np.nonzero(t_label) | |||||
| # Transform to ltrb. | |||||
| bboxes = np.zeros((config.NUM_SSD_BOXES, 4), dtype=np.float32) | |||||
| bboxes[:, [0, 1]] = (t_boxes[:, [0, 1]] + t_boxes[:, [2, 3]]) / 2 | |||||
| bboxes[:, [2, 3]] = t_boxes[:, [2, 3]] - t_boxes[:, [0, 1]] | |||||
| # Encode features. | |||||
| bboxes_t = bboxes[index] | |||||
| default_boxes_t = default_boxes[index] | |||||
| bboxes_t[:, :2] = (bboxes_t[:, :2] - default_boxes_t[:, :2]) / (default_boxes_t[:, 2:] * config.PRIOR_SCALING[0]) | |||||
| bboxes_t[:, 2:4] = np.log(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4]) / config.PRIOR_SCALING[1] | |||||
| bboxes[index] = bboxes_t | |||||
| num_match_num = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32) | |||||
| return bboxes, t_label.astype(np.int32), num_match_num | |||||
| def ssd_bboxes_decode(boxes, index, image_shape): | |||||
| """Decode predict boxes to [x, y, w, h]""" | |||||
| boxes_t = boxes[index] | |||||
| default_boxes_t = default_boxes[index] | |||||
| boxes_t[:, :2] = boxes_t[:, :2] * config.PRIOR_SCALING[0] * default_boxes_t[:, 2:] + default_boxes_t[:, :2] | |||||
| boxes_t[:, 2:4] = np.exp(boxes_t[:, 2:4] * config.PRIOR_SCALING[1]) * default_boxes_t[:, 2:4] | |||||
| bboxes = np.zeros((len(boxes_t), 4), dtype=np.float32) | |||||
| bboxes[:, [0, 1]] = boxes_t[:, [0, 1]] - boxes_t[:, [2, 3]] / 2 | |||||
| bboxes[:, [2, 3]] = boxes_t[:, [0, 1]] + boxes_t[:, [2, 3]] / 2 | |||||
| return bboxes | |||||
| def preprocess_fn(image, box, is_training): | |||||
| """Preprocess function for dataset.""" | |||||
| def _rand(a=0., b=1.): | |||||
| """Generate random.""" | |||||
| return np.random.rand() * (b - a) + a | |||||
| def _infer_data(image, input_shape, box): | |||||
| img_h, img_w, _ = image.shape | |||||
| input_h, input_w = input_shape | |||||
| scale = min(float(input_w) / float(img_w), float(input_h) / float(img_h)) | |||||
| nw = int(img_w * scale) | |||||
| nh = int(img_h * scale) | |||||
| image = cv2.resize(image, (nw, nh)) | |||||
| new_image = np.zeros((input_h, input_w, 3), np.float32) | |||||
| dh = (input_h - nh) // 2 | |||||
| dw = (input_w - nw) // 2 | |||||
| new_image[dh: (nh + dh), dw: (nw + dw), :] = image | |||||
| image = new_image | |||||
| #When the channels of image is 1 | |||||
| if len(image.shape) == 2: | |||||
| image = np.expand_dims(image, axis=-1) | |||||
| image = np.concatenate([image, image, image], axis=-1) | |||||
| box = box.astype(np.float32) | |||||
| box[:, [0, 2]] = (box[:, [0, 2]] * scale + dw) / input_w | |||||
| box[:, [1, 3]] = (box[:, [1, 3]] * scale + dh) / input_h | |||||
| return image, np.array((img_h, img_w), np.float32), box | |||||
| def _data_aug(image, box, is_training, image_size=(300, 300)): | |||||
| """Data augmentation function.""" | |||||
| ih, iw, _ = image.shape | |||||
| w, h = image_size | |||||
| if not is_training: | |||||
| return _infer_data(image, image_size, box) | |||||
| # Random settings | |||||
| scale_w = _rand(0.75, 1.25) | |||||
| scale_h = _rand(0.75, 1.25) | |||||
| flip = _rand() < .5 | |||||
| nw = iw * scale_w | |||||
| nh = ih * scale_h | |||||
| scale = min(w / nw, h / nh) | |||||
| nw = int(scale * nw) | |||||
| nh = int(scale * nh) | |||||
| # Resize image | |||||
| image = cv2.resize(image, (nw, nh)) | |||||
| # place image | |||||
| new_image = np.zeros((h, w, 3), dtype=np.float32) | |||||
| dw = (w - nw) // 2 | |||||
| dh = (h - nh) // 2 | |||||
| new_image[dh:dh + nh, dw:dw + nw, :] = image | |||||
| image = new_image | |||||
| # Flip image or not | |||||
| if flip: | |||||
| image = cv2.flip(image, 1, dst=None) | |||||
| # Convert image to gray or not | |||||
| gray = _rand() < .25 | |||||
| if gray: | |||||
| image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |||||
| # When the channels of image is 1 | |||||
| if len(image.shape) == 2: | |||||
| image = np.expand_dims(image, axis=-1) | |||||
| image = np.concatenate([image, image, image], axis=-1) | |||||
| box = box.astype(np.float32) | |||||
| # Transform box with shape[x1, y1, x2, y2]. | |||||
| box[:, [0, 2]] = (box[:, [0, 2]] * scale * scale_w + dw) / w | |||||
| box[:, [1, 3]] = (box[:, [1, 3]] * scale * scale_h + dh) / h | |||||
| if flip: | |||||
| box[:, [0, 2]] = 1 - box[:, [2, 0]] | |||||
| box, label, num_match_num = ssd_bboxes_encode(box) | |||||
| return image, box, label, num_match_num | |||||
| return _data_aug(image, box, is_training, image_size=config.IMG_SHAPE) | |||||
| def create_coco_label(is_training): | |||||
| """Get image path and annotation from COCO.""" | |||||
| from pycocotools.coco import COCO | |||||
| coco_root = config.COCO_ROOT | |||||
| data_type = config.VAL_DATA_TYPE | |||||
| if is_training: | |||||
| data_type = config.TRAIN_DATA_TYPE | |||||
| #Classes need to train or test. | |||||
| train_cls = config.COCO_CLASSES | |||||
| train_cls_dict = {} | |||||
| for i, cls in enumerate(train_cls): | |||||
| train_cls_dict[cls] = i | |||||
| anno_json = os.path.join(coco_root, config.INSTANCES_SET.format(data_type)) | |||||
| coco = COCO(anno_json) | |||||
| classs_dict = {} | |||||
| cat_ids = coco.loadCats(coco.getCatIds()) | |||||
| for cat in cat_ids: | |||||
| classs_dict[cat["id"]] = cat["name"] | |||||
| image_ids = coco.getImgIds() | |||||
| image_files = [] | |||||
| image_anno_dict = {} | |||||
| for img_id in image_ids: | |||||
| image_info = coco.loadImgs(img_id) | |||||
| file_name = image_info[0]["file_name"] | |||||
| anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None) | |||||
| anno = coco.loadAnns(anno_ids) | |||||
| image_path = os.path.join(coco_root, data_type, file_name) | |||||
| annos = [] | |||||
| for label in anno: | |||||
| bbox = label["bbox"] | |||||
| class_name = classs_dict[label["category_id"]] | |||||
| if class_name in train_cls: | |||||
| x_min, x_max = bbox[0], bbox[0] + bbox[2] | |||||
| y_min, y_max = bbox[1], bbox[1] + bbox[3] | |||||
| annos.append(list(map(round, [x_min, y_min, x_max, y_max])) + [train_cls_dict[class_name]]) | |||||
| if len(annos) >= 1: | |||||
| image_files.append(image_path) | |||||
| image_anno_dict[image_path] = np.array(annos) | |||||
| return image_files, image_anno_dict | |||||
| def anno_parser(annos_str): | |||||
| """Parse annotation from string to list.""" | |||||
| annos = [] | |||||
| for anno_str in annos_str: | |||||
| anno = list(map(int, anno_str.strip().split(','))) | |||||
| annos.append(anno) | |||||
| return annos | |||||
| def filter_valid_data(image_dir, anno_path): | |||||
| """Filter valid image file, which both in image_dir and anno_path.""" | |||||
| image_files = [] | |||||
| image_anno_dict = {} | |||||
| if not os.path.isdir(image_dir): | |||||
| raise RuntimeError("Path given is not valid.") | |||||
| if not os.path.isfile(anno_path): | |||||
| raise RuntimeError("Annotation file is not valid.") | |||||
| with open(anno_path, "rb") as f: | |||||
| lines = f.readlines() | |||||
| for line in lines: | |||||
| line_str = line.decode("utf-8").strip() | |||||
| line_split = str(line_str).split(' ') | |||||
| file_name = line_split[0] | |||||
| image_path = os.path.join(image_dir, file_name) | |||||
| if os.path.isfile(image_path): | |||||
| image_anno_dict[image_path] = anno_parser(line_split[1:]) | |||||
| image_files.append(image_path) | |||||
| return image_files, image_anno_dict | |||||
| def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="ssd.mindrecord", file_num=8): | |||||
| """Create MindRecord file.""" | |||||
| mindrecord_dir = config.MINDRECORD_DIR | |||||
| mindrecord_path = os.path.join(mindrecord_dir, prefix) | |||||
| writer = FileWriter(mindrecord_path, file_num) | |||||
| if dataset == "coco": | |||||
| image_files, image_anno_dict = create_coco_label(is_training) | |||||
| else: | |||||
| image_files, image_anno_dict = filter_valid_data(config.IMAGE_DIR, config.ANNO_PATH) | |||||
| ssd_json = { | |||||
| "image": {"type": "bytes"}, | |||||
| "annotation": {"type": "int32", "shape": [-1, 5]}, | |||||
| } | |||||
| writer.add_schema(ssd_json, "ssd_json") | |||||
| for image_name in image_files: | |||||
| with open(image_name, 'rb') as f: | |||||
| img = f.read() | |||||
| annos = np.array(image_anno_dict[image_name], dtype=np.int32) | |||||
| row = {"image": img, "annotation": annos} | |||||
| writer.write_raw_data([row]) | |||||
| writer.commit() | |||||
| def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num=1, rank=0, | |||||
| is_training=True, num_parallel_workers=4): | |||||
| """Creatr SSD dataset with MindDataset.""" | |||||
| ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank, | |||||
| num_parallel_workers=num_parallel_workers, shuffle=is_training) | |||||
| decode = C.Decode() | |||||
| ds = ds.map(input_columns=["image"], operations=decode) | |||||
| compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training)) | |||||
| if is_training: | |||||
| hwc_to_chw = C.HWC2CHW() | |||||
| ds = ds.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "box", "label", "num_match_num"], | |||||
| columns_order=["image", "box", "label", "num_match_num"], | |||||
| operations=compose_map_func, python_multiprocessing=True, num_parallel_workers=num_parallel_workers) | |||||
| ds = ds.map(input_columns=["image"], operations=hwc_to_chw, python_multiprocessing=True, | |||||
| num_parallel_workers=num_parallel_workers) | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | |||||
| ds = ds.repeat(repeat_num) | |||||
| else: | |||||
| hwc_to_chw = C.HWC2CHW() | |||||
| ds = ds.map(input_columns=["image", "annotation"], | |||||
| output_columns=["image", "image_shape", "annotation"], | |||||
| columns_order=["image", "image_shape", "annotation"], | |||||
| operations=compose_map_func) | |||||
| ds = ds.map(input_columns=["image"], operations=hwc_to_chw, num_parallel_workers=num_parallel_workers) | |||||
| ds = ds.batch(batch_size, drop_remainder=True) | |||||
| ds = ds.repeat(repeat_num) | |||||
| return ds | |||||
| @@ -0,0 +1,99 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # less required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Evaluation for SSD""" | |||||
| import os | |||||
| import argparse | |||||
| import time | |||||
| from mindspore import context, Tensor | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.model_zoo.ssd import SSD300, ssd_mobilenet_v2 | |||||
| from dataset import create_ssd_dataset, data_to_mindrecord_byte_image | |||||
| from config import ConfigSSD | |||||
| from util import metrics | |||||
| def ssd_eval(dataset_path, ckpt_path): | |||||
| """SSD evaluation.""" | |||||
| ds = create_ssd_dataset(dataset_path, batch_size=1, repeat_num=1, is_training=False) | |||||
| net = SSD300(ssd_mobilenet_v2(), ConfigSSD(), is_training=False) | |||||
| print("Load Checkpoint!") | |||||
| param_dict = load_checkpoint(ckpt_path) | |||||
| load_param_into_net(net, param_dict) | |||||
| net.set_train(False) | |||||
| i = 1. | |||||
| total = ds.get_dataset_size() | |||||
| start = time.time() | |||||
| pred_data = [] | |||||
| print("\n========================================\n") | |||||
| print("total images num: ", total) | |||||
| print("Processing, please wait a moment.") | |||||
| for data in ds.create_dict_iterator(): | |||||
| img_np = data['image'] | |||||
| image_shape = data['image_shape'] | |||||
| annotation = data['annotation'] | |||||
| output = net(Tensor(img_np)) | |||||
| for batch_idx in range(img_np.shape[0]): | |||||
| pred_data.append({"boxes": output[0].asnumpy()[batch_idx], | |||||
| "box_scores": output[1].asnumpy()[batch_idx], | |||||
| "annotation": annotation, | |||||
| "image_shape": image_shape}) | |||||
| percent = round(i / total * 100, 2) | |||||
| print(f' {str(percent)} [{i}/{total}]', end='\r') | |||||
| i += 1 | |||||
| cost_time = int((time.time() - start) * 1000) | |||||
| print(f' 100% [{total}/{total}] cost {cost_time} ms') | |||||
| mAP = metrics(pred_data) | |||||
| print("\n========================================\n") | |||||
| print(f"mAP: {mAP}") | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='SSD evaluation') | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | |||||
| parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.") | |||||
| parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.") | |||||
| args_opt = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) | |||||
| context.set_context(enable_task_sink=True, enable_loop_sink=True, enable_mem_reuse=True) | |||||
| config = ConfigSSD() | |||||
| prefix = "ssd_eval.mindrecord" | |||||
| mindrecord_dir = config.MINDRECORD_DIR | |||||
| mindrecord_file = os.path.join(mindrecord_dir, prefix + "0") | |||||
| if not os.path.exists(mindrecord_file): | |||||
| if not os.path.isdir(mindrecord_dir): | |||||
| os.makedirs(mindrecord_dir) | |||||
| if args_opt.dataset == "coco": | |||||
| if os.path.isdir(config.COCO_ROOT): | |||||
| print("Create Mindrecord.") | |||||
| data_to_mindrecord_byte_image("coco", False, prefix) | |||||
| print("Create Mindrecord Done, at {}".format(mindrecord_dir)) | |||||
| else: | |||||
| print("COCO_ROOT not exits.") | |||||
| else: | |||||
| if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH): | |||||
| print("Create Mindrecord.") | |||||
| data_to_mindrecord_byte_image("other", False, prefix) | |||||
| print("Create Mindrecord Done, at {}".format(mindrecord_dir)) | |||||
| else: | |||||
| print("IMAGE_DIR or ANNO_PATH not exits.") | |||||
| print("Start Eval!") | |||||
| ssd_eval(mindrecord_file, args_opt.checkpoint_path) | |||||
| @@ -0,0 +1,54 @@ | |||||
| #!/bin/bash | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| echo "==============================================================================================================" | |||||
| echo "Please run the scipt as: " | |||||
| echo "sh run_distribute_train.sh DEVICE_NUM EPOCH_SIZE MINDSPORE_HCCL_CONFIG_PATH" | |||||
| echo "for example: sh run_distribute_train.sh 8 150 coco /data/hccl.json" | |||||
| echo "It is better to use absolute path." | |||||
| echo "The learning rate is 0.4 as default, if you want other lr, please change the value in this script." | |||||
| echo "==============================================================================================================" | |||||
| # Before start distribute train, first create mindrecord files. | |||||
| python train.py --only_create_dataset=1 | |||||
| echo "After running the scipt, the network runs in the background. The log will be generated in LOGx/log.txt" | |||||
| export RANK_SIZE=$1 | |||||
| EPOCH_SIZE=$2 | |||||
| DATASET=$3 | |||||
| export MINDSPORE_HCCL_CONFIG_PATH=$4 | |||||
| for((i=0;i<RANK_SIZE;i++)) | |||||
| do | |||||
| export DEVICE_ID=$i | |||||
| rm -rf LOG$i | |||||
| mkdir ./LOG$i | |||||
| cp *.py ./LOG$i | |||||
| cd ./LOG$i || exit | |||||
| export RANK_ID=$i | |||||
| echo "start training for rank $i, device $DEVICE_ID" | |||||
| env > env.log | |||||
| python ../train.py \ | |||||
| --distribute=1 \ | |||||
| --lr=0.4 \ | |||||
| --dataset=$DATASET \ | |||||
| --device_num=$RANK_SIZE \ | |||||
| --device_id=$DEVICE_ID \ | |||||
| --epoch_size=$EPOCH_SIZE > log.txt 2>&1 & | |||||
| cd ../ | |||||
| done | |||||
| @@ -0,0 +1,176 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # less required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """train SSD and get checkpoint files.""" | |||||
| import os | |||||
| import math | |||||
| import argparse | |||||
| import numpy as np | |||||
| import mindspore.nn as nn | |||||
| from mindspore import context, Tensor | |||||
| from mindspore.communication.management import init | |||||
| from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor | |||||
| from mindspore.train import Model, ParallelMode | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.common.initializer import initializer | |||||
| from mindspore.model_zoo.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2 | |||||
| from config import ConfigSSD | |||||
| from dataset import create_ssd_dataset, data_to_mindrecord_byte_image | |||||
| def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch): | |||||
| """ | |||||
| generate learning rate array | |||||
| Args: | |||||
| global_step(int): total steps of the training | |||||
| lr_init(float): init learning rate | |||||
| lr_end(float): end learning rate | |||||
| lr_max(float): max learning rate | |||||
| warmup_epochs(int): number of warmup epochs | |||||
| total_epochs(int): total epoch of training | |||||
| steps_per_epoch(int): steps of one epoch | |||||
| Returns: | |||||
| np.array, learning rate array | |||||
| """ | |||||
| lr_each_step = [] | |||||
| total_steps = steps_per_epoch * total_epochs | |||||
| warmup_steps = steps_per_epoch * warmup_epochs | |||||
| for i in range(total_steps): | |||||
| if i < warmup_steps: | |||||
| lr = lr_init + (lr_max - lr_init) * i / warmup_steps | |||||
| else: | |||||
| lr = lr_end + (lr_max - lr_end) * \ | |||||
| (1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2. | |||||
| if lr < 0.0: | |||||
| lr = 0.0 | |||||
| lr_each_step.append(lr) | |||||
| current_step = global_step | |||||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||||
| learning_rate = lr_each_step[current_step:] | |||||
| return learning_rate | |||||
| def init_net_param(network, initialize_mode='XavierUniform'): | |||||
| """Init the parameters in net.""" | |||||
| params = network.trainable_params() | |||||
| for p in params: | |||||
| if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name: | |||||
| p.set_parameter_data(initializer(initialize_mode, p.data.shape(), p.data.dtype())) | |||||
| def main(): | |||||
| parser = argparse.ArgumentParser(description="SSD training") | |||||
| parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create " | |||||
| "Mindrecord, default is false.") | |||||
| parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is false.") | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | |||||
| parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") | |||||
| parser.add_argument("--lr", type=float, default=0.25, help="Learning rate, default is 0.25.") | |||||
| parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.") | |||||
| parser.add_argument("--dataset", type=str, default="coco", help="Dataset, defalut is coco.") | |||||
| parser.add_argument("--epoch_size", type=int, default=70, help="Epoch size, default is 70.") | |||||
| parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.") | |||||
| parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path.") | |||||
| parser.add_argument("--save_checkpoint_epochs", type=int, default=5, help="Save checkpoint epochs, default is 5.") | |||||
| parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.") | |||||
| args_opt = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) | |||||
| context.set_context(enable_task_sink=True, enable_loop_sink=True, enable_mem_reuse=True) | |||||
| if args_opt.distribute: | |||||
| device_num = args_opt.device_num | |||||
| context.reset_auto_parallel_context() | |||||
| context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, | |||||
| device_num=device_num) | |||||
| init() | |||||
| rank = args_opt.device_id % device_num | |||||
| else: | |||||
| rank = 0 | |||||
| device_num = 1 | |||||
| print("Start create dataset!") | |||||
| # It will generate mindrecord file in args_opt.mindrecord_dir, | |||||
| # and the file name is ssd.mindrecord0, 1, ... file_num. | |||||
| config = ConfigSSD() | |||||
| prefix = "ssd.mindrecord" | |||||
| mindrecord_dir = config.MINDRECORD_DIR | |||||
| mindrecord_file = os.path.join(mindrecord_dir, prefix + "0") | |||||
| if not os.path.exists(mindrecord_file): | |||||
| if not os.path.isdir(mindrecord_dir): | |||||
| os.makedirs(mindrecord_dir) | |||||
| if args_opt.dataset == "coco": | |||||
| if os.path.isdir(config.COCO_ROOT): | |||||
| print("Create Mindrecord.") | |||||
| data_to_mindrecord_byte_image("coco", True, prefix) | |||||
| print("Create Mindrecord Done, at {}".format(mindrecord_dir)) | |||||
| else: | |||||
| print("COCO_ROOT not exits.") | |||||
| else: | |||||
| if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH): | |||||
| print("Create Mindrecord.") | |||||
| data_to_mindrecord_byte_image("other", True, prefix) | |||||
| print("Create Mindrecord Done, at {}".format(mindrecord_dir)) | |||||
| else: | |||||
| print("IMAGE_DIR or ANNO_PATH not exits.") | |||||
| if not args_opt.only_create_dataset: | |||||
| loss_scale = float(args_opt.loss_scale) | |||||
| # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0. | |||||
| dataset = create_ssd_dataset(mindrecord_file, repeat_num=args_opt.epoch_size, | |||||
| batch_size=args_opt.batch_size, device_num=device_num, rank=rank) | |||||
| dataset_size = dataset.get_dataset_size() | |||||
| print("Create dataset done!") | |||||
| ssd = SSD300(backbone=ssd_mobilenet_v2(), config=config) | |||||
| net = SSDWithLossCell(ssd, config) | |||||
| init_net_param(net) | |||||
| # checkpoint | |||||
| ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs) | |||||
| ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=None, config=ckpt_config) | |||||
| lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=args_opt.lr, | |||||
| warmup_epochs=max(args_opt.epoch_size // 20, 1), | |||||
| total_epochs=args_opt.epoch_size, | |||||
| steps_per_epoch=dataset_size)) | |||||
| opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, 0.9, 0.0001, loss_scale) | |||||
| net = TrainingWrapper(net, opt, loss_scale) | |||||
| if args_opt.checkpoint_path != "": | |||||
| param_dict = load_checkpoint(args_opt.checkpoint_path) | |||||
| load_param_into_net(net, param_dict) | |||||
| callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb] | |||||
| model = Model(net) | |||||
| dataset_sink_mode = False | |||||
| if args_opt.mode == "sink": | |||||
| print("In sink mode, one epoch return a loss.") | |||||
| dataset_sink_mode = True | |||||
| print("Start train SSD, the first epoch will be slower because of the graph compilation.") | |||||
| model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode) | |||||
| if __name__ == '__main__': | |||||
| main() | |||||
| @@ -0,0 +1,208 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """metrics utils""" | |||||
| import numpy as np | |||||
| from config import ConfigSSD | |||||
| from dataset import ssd_bboxes_decode | |||||
| def calc_iou(bbox_pred, bbox_ground): | |||||
| """Calculate iou of predicted bbox and ground truth.""" | |||||
| bbox_pred = np.expand_dims(bbox_pred, axis=0) | |||||
| pred_w = bbox_pred[:, 2] - bbox_pred[:, 0] | |||||
| pred_h = bbox_pred[:, 3] - bbox_pred[:, 1] | |||||
| pred_area = pred_w * pred_h | |||||
| gt_w = bbox_ground[:, 2] - bbox_ground[:, 0] | |||||
| gt_h = bbox_ground[:, 3] - bbox_ground[:, 1] | |||||
| gt_area = gt_w * gt_h | |||||
| iw = np.minimum(bbox_pred[:, 2], bbox_ground[:, 2]) - np.maximum(bbox_pred[:, 0], bbox_ground[:, 0]) | |||||
| ih = np.minimum(bbox_pred[:, 3], bbox_ground[:, 3]) - np.maximum(bbox_pred[:, 1], bbox_ground[:, 1]) | |||||
| iw = np.maximum(iw, 0) | |||||
| ih = np.maximum(ih, 0) | |||||
| intersection_area = iw * ih | |||||
| union_area = pred_area + gt_area - intersection_area | |||||
| union_area = np.maximum(union_area, np.finfo(float).eps) | |||||
| iou = intersection_area * 1. / union_area | |||||
| return iou | |||||
| def apply_nms(all_boxes, all_scores, thres, max_boxes): | |||||
| """Apply NMS to bboxes.""" | |||||
| x1 = all_boxes[:, 0] | |||||
| y1 = all_boxes[:, 1] | |||||
| x2 = all_boxes[:, 2] | |||||
| y2 = all_boxes[:, 3] | |||||
| areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |||||
| order = all_scores.argsort()[::-1] | |||||
| keep = [] | |||||
| while order.size > 0: | |||||
| i = order[0] | |||||
| keep.append(i) | |||||
| if len(keep) >= max_boxes: | |||||
| break | |||||
| xx1 = np.maximum(x1[i], x1[order[1:]]) | |||||
| yy1 = np.maximum(y1[i], y1[order[1:]]) | |||||
| xx2 = np.minimum(x2[i], x2[order[1:]]) | |||||
| yy2 = np.minimum(y2[i], y2[order[1:]]) | |||||
| w = np.maximum(0.0, xx2 - xx1 + 1) | |||||
| h = np.maximum(0.0, yy2 - yy1 + 1) | |||||
| inter = w * h | |||||
| ovr = inter / (areas[i] + areas[order[1:]] - inter) | |||||
| inds = np.where(ovr <= thres)[0] | |||||
| order = order[inds + 1] | |||||
| return keep | |||||
| def calc_ap(recall, precision): | |||||
| """Calculate AP.""" | |||||
| correct_recall = np.concatenate(([0.], recall, [1.])) | |||||
| correct_precision = np.concatenate(([0.], precision, [0.])) | |||||
| for i in range(correct_recall.size - 1, 0, -1): | |||||
| correct_precision[i - 1] = np.maximum(correct_precision[i - 1], correct_precision[i]) | |||||
| i = np.where(correct_recall[1:] != correct_recall[:-1])[0] | |||||
| ap = np.sum((correct_recall[i + 1] - correct_recall[i]) * correct_precision[i + 1]) | |||||
| return ap | |||||
| def metrics(pred_data): | |||||
| """Calculate mAP of predicted bboxes.""" | |||||
| config = ConfigSSD() | |||||
| num_classes = config.NUM_CLASSES | |||||
| all_detections = [None for i in range(num_classes)] | |||||
| all_pred_scores = [None for i in range(num_classes)] | |||||
| all_annotations = [None for i in range(num_classes)] | |||||
| average_precisions = {} | |||||
| num = [0 for i in range(num_classes)] | |||||
| accurate_num = [0 for i in range(num_classes)] | |||||
| for sample in pred_data: | |||||
| pred_boxes = sample['boxes'] | |||||
| boxes_scores = sample['box_scores'] | |||||
| annotation = sample['annotation'] | |||||
| image_shape = sample['image_shape'] | |||||
| annotation = np.squeeze(annotation, axis=0) | |||||
| image_shape = np.squeeze(image_shape, axis=0) | |||||
| pred_labels = np.argmax(boxes_scores, axis=-1) | |||||
| index = np.nonzero(pred_labels) | |||||
| pred_boxes = ssd_bboxes_decode(pred_boxes, index, image_shape) | |||||
| pred_boxes = pred_boxes.clip(0, 1) | |||||
| boxes_scores = np.max(boxes_scores, axis=-1) | |||||
| boxes_scores = boxes_scores[index] | |||||
| pred_labels = pred_labels[index] | |||||
| top_k = 50 | |||||
| for c in range(1, num_classes): | |||||
| if len(pred_labels) >= 1: | |||||
| class_box_scores = boxes_scores[pred_labels == c] | |||||
| class_boxes = pred_boxes[pred_labels == c] | |||||
| nms_index = apply_nms(class_boxes, class_box_scores, config.MATCH_THRESHOLD, top_k) | |||||
| class_boxes = class_boxes[nms_index] | |||||
| class_box_scores = class_box_scores[nms_index] | |||||
| cmask = class_box_scores > 0.5 | |||||
| class_boxes = class_boxes[cmask] | |||||
| class_box_scores = class_box_scores[cmask] | |||||
| all_detections[c] = class_boxes | |||||
| all_pred_scores[c] = class_box_scores | |||||
| for c in range(1, num_classes): | |||||
| if len(annotation) >= 1: | |||||
| all_annotations[c] = annotation[annotation[:, 4] == c, :4] | |||||
| for c in range(1, num_classes): | |||||
| false_positives = np.zeros((0,)) | |||||
| true_positives = np.zeros((0,)) | |||||
| scores = np.zeros((0,)) | |||||
| num_annotations = 0.0 | |||||
| annotations = all_annotations[c] | |||||
| num_annotations += annotations.shape[0] | |||||
| detections = all_detections[c] | |||||
| pred_scores = all_pred_scores[c] | |||||
| for index, detection in enumerate(detections): | |||||
| scores = np.append(scores, pred_scores[index]) | |||||
| if len(annotations) >= 1: | |||||
| IoUs = calc_iou(detection, annotations) | |||||
| assigned_anno = np.argmax(IoUs) | |||||
| max_overlap = IoUs[assigned_anno] | |||||
| if max_overlap >= 0.5: | |||||
| false_positives = np.append(false_positives, 0) | |||||
| true_positives = np.append(true_positives, 1) | |||||
| else: | |||||
| false_positives = np.append(false_positives, 1) | |||||
| true_positives = np.append(true_positives, 0) | |||||
| else: | |||||
| false_positives = np.append(false_positives, 1) | |||||
| true_positives = np.append(true_positives, 0) | |||||
| if num_annotations == 0: | |||||
| if c not in average_precisions.keys(): | |||||
| average_precisions[c] = 0 | |||||
| continue | |||||
| accurate_num[c] = 1 | |||||
| indices = np.argsort(-scores) | |||||
| false_positives = false_positives[indices] | |||||
| true_positives = true_positives[indices] | |||||
| false_positives = np.cumsum(false_positives) | |||||
| true_positives = np.cumsum(true_positives) | |||||
| recall = true_positives * 1. / num_annotations | |||||
| precision = true_positives * 1. / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps) | |||||
| average_precision = calc_ap(recall, precision) | |||||
| if c not in average_precisions.keys(): | |||||
| average_precisions[c] = average_precision | |||||
| else: | |||||
| average_precisions[c] += average_precision | |||||
| num[c] += 1 | |||||
| count = 0 | |||||
| for key in average_precisions: | |||||
| if num[key] != 0: | |||||
| count += (average_precisions[key] / num[key]) | |||||
| mAP = count * 1. / accurate_num.count(1) | |||||
| return mAP | |||||
| @@ -0,0 +1,367 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """SSD net based MobilenetV2.""" | |||||
| import mindspore.common.dtype as mstype | |||||
| import mindspore as ms | |||||
| import mindspore.nn as nn | |||||
| from mindspore import context | |||||
| from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||||
| from mindspore.communication.management import get_group_size | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops import functional as F | |||||
| from mindspore.ops import composite as C | |||||
| from mindspore.common.initializer import initializer | |||||
| from .mobilenet import InvertedResidual, ConvBNReLU | |||||
| def _conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same'): | |||||
| weight_shape = (out_channel, in_channel, kernel_size, kernel_size) | |||||
| weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32) | |||||
| return nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=stride, | |||||
| padding=0, pad_mode=pad_mod, weight_init=weight) | |||||
| def _make_divisible(v, divisor, min_value=None): | |||||
| """nsures that all layers have a channel number that is divisible by 8.""" | |||||
| if min_value is None: | |||||
| min_value = divisor | |||||
| new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |||||
| # Make sure that round down does not go down by more than 10%. | |||||
| if new_v < 0.9 * v: | |||||
| new_v += divisor | |||||
| return new_v | |||||
| class FlattenConcat(nn.Cell): | |||||
| """ | |||||
| Concatenate predictions into a single tensor. | |||||
| Args: | |||||
| config (Class): The default config of SSD. | |||||
| Returns: | |||||
| Tensor, flatten predictions. | |||||
| """ | |||||
| def __init__(self, config): | |||||
| super(FlattenConcat, self).__init__() | |||||
| self.sizes = config.FEATURE_SIZE | |||||
| self.length = len(self.sizes) | |||||
| self.num_default = config.NUM_DEFAULT | |||||
| self.concat = P.Concat(axis=-1) | |||||
| self.transpose = P.Transpose() | |||||
| def construct(self, x): | |||||
| output = () | |||||
| for i in range(self.length): | |||||
| shape = F.shape(x[i]) | |||||
| mid_shape = (shape[0], -1, self.num_default[i], self.sizes[i], self.sizes[i]) | |||||
| final_shape = (shape[0], -1, self.num_default[i] * self.sizes[i] * self.sizes[i]) | |||||
| output += (F.reshape(F.reshape(x[i], mid_shape), final_shape),) | |||||
| res = self.concat(output) | |||||
| return self.transpose(res, (0, 2, 1)) | |||||
| class MultiBox(nn.Cell): | |||||
| """ | |||||
| Multibox conv layers. Each multibox layer contains class conf scores and localization predictions. | |||||
| Args: | |||||
| config (Class): The default config of SSD. | |||||
| Returns: | |||||
| Tensor, localization predictions. | |||||
| Tensor, class conf scores. | |||||
| """ | |||||
| def __init__(self, config): | |||||
| super(MultiBox, self).__init__() | |||||
| num_classes = config.NUM_CLASSES | |||||
| out_channels = config.EXTRAS_OUT_CHANNELS | |||||
| num_default = config.NUM_DEFAULT | |||||
| loc_layers = [] | |||||
| cls_layers = [] | |||||
| for k, out_channel in enumerate(out_channels): | |||||
| loc_layers += [_conv2d(out_channel, 4 * num_default[k], | |||||
| kernel_size=3, stride=1, pad_mod='same')] | |||||
| cls_layers += [_conv2d(out_channel, num_classes * num_default[k], | |||||
| kernel_size=3, stride=1, pad_mod='same')] | |||||
| self.multi_loc_layers = nn.layer.CellList(loc_layers) | |||||
| self.multi_cls_layers = nn.layer.CellList(cls_layers) | |||||
| self.flatten_concat = FlattenConcat(config) | |||||
| def construct(self, inputs): | |||||
| loc_outputs = () | |||||
| cls_outputs = () | |||||
| for i in range(len(self.multi_loc_layers)): | |||||
| loc_outputs += (self.multi_loc_layers[i](inputs[i]),) | |||||
| cls_outputs += (self.multi_cls_layers[i](inputs[i]),) | |||||
| return self.flatten_concat(loc_outputs), self.flatten_concat(cls_outputs) | |||||
| class SSD300(nn.Cell): | |||||
| """ | |||||
| SSD300 Network. Default backbone is resnet34. | |||||
| Args: | |||||
| backbone (Cell): Backbone Network. | |||||
| config (Class): The default config of SSD. | |||||
| Returns: | |||||
| Tensor, localization predictions. | |||||
| Tensor, class conf scores. | |||||
| Examples:backbone | |||||
| SSD300(backbone=resnet34(num_classes=None), | |||||
| config=ConfigSSDResNet34()). | |||||
| """ | |||||
| def __init__(self, backbone, config, is_training=True): | |||||
| super(SSD300, self).__init__() | |||||
| self.backbone = backbone | |||||
| in_channels = config.EXTRAS_IN_CHANNELS | |||||
| out_channels = config.EXTRAS_OUT_CHANNELS | |||||
| ratios = config.EXTRAS_RATIO | |||||
| strides = config.EXTRAS_STRIDES | |||||
| residual_list = [] | |||||
| for i in range(2, len(in_channels)): | |||||
| residual = InvertedResidual(in_channels[i], out_channels[i], stride=strides[i], expand_ratio=ratios[i]) | |||||
| residual_list.append(residual) | |||||
| self.multi_residual = nn.layer.CellList(residual_list) | |||||
| self.multi_box = MultiBox(config) | |||||
| self.is_training = is_training | |||||
| if not is_training: | |||||
| self.softmax = P.Softmax() | |||||
| def construct(self, x): | |||||
| layer_out_13, output = self.backbone(x) | |||||
| multi_feature = (layer_out_13, output) | |||||
| feature = output | |||||
| for residual in self.multi_residual: | |||||
| feature = residual(feature) | |||||
| multi_feature += (feature,) | |||||
| pred_loc, pred_label = self.multi_box(multi_feature) | |||||
| if not self.is_training: | |||||
| pred_label = self.softmax(pred_label) | |||||
| return pred_loc, pred_label | |||||
| class LocalizationLoss(nn.Cell): | |||||
| """" | |||||
| Computes the localization loss with SmoothL1Loss. | |||||
| Returns: | |||||
| Tensor, box regression loss. | |||||
| """ | |||||
| def __init__(self): | |||||
| super(LocalizationLoss, self).__init__() | |||||
| self.reduce_sum = P.ReduceSum() | |||||
| self.reduce_mean = P.ReduceMean() | |||||
| self.loss = nn.SmoothL1Loss() | |||||
| self.expand_dims = P.ExpandDims() | |||||
| self.less = P.Less() | |||||
| def construct(self, pred_loc, gt_loc, gt_label, num_matched_boxes): | |||||
| mask = F.cast(self.less(0, gt_label), mstype.float32) | |||||
| mask = self.expand_dims(mask, -1) | |||||
| smooth_l1 = self.loss(gt_loc, pred_loc) * mask | |||||
| box_loss = self.reduce_sum(smooth_l1, 1) | |||||
| return self.reduce_mean(box_loss / F.cast(num_matched_boxes, mstype.float32), (0, 1)) | |||||
| class ClassificationLoss(nn.Cell): | |||||
| """" | |||||
| Computes the classification loss with hard example mining. | |||||
| Args: | |||||
| config (Class): The default config of SSD. | |||||
| Returns: | |||||
| Tensor, classification loss. | |||||
| """ | |||||
| def __init__(self, config): | |||||
| super(ClassificationLoss, self).__init__() | |||||
| self.num_classes = config.NUM_CLASSES | |||||
| self.num_boxes = config.NUM_SSD_BOXES | |||||
| self.neg_pre_positive = config.NEG_PRE_POSITIVE | |||||
| self.minimum = P.Minimum() | |||||
| self.less = P.Less() | |||||
| self.sort = P.TopK() | |||||
| self.tile = P.Tile() | |||||
| self.reduce_sum = P.ReduceSum() | |||||
| self.reduce_mean = P.ReduceMean() | |||||
| self.expand_dims = P.ExpandDims() | |||||
| self.sort_descend = P.TopK(True) | |||||
| self.cross_entropy = nn.SoftmaxCrossEntropyWithLogits(sparse=True) | |||||
| def construct(self, pred_label, gt_label, num_matched_boxes): | |||||
| gt_label = F.cast(gt_label, mstype.int32) | |||||
| mask = F.cast(self.less(0, gt_label), mstype.float32) | |||||
| gt_label_shape = F.shape(gt_label) | |||||
| pred_label = F.reshape(pred_label, (-1, self.num_classes)) | |||||
| gt_label = F.reshape(gt_label, (-1,)) | |||||
| cross_entropy = self.cross_entropy(pred_label, gt_label) | |||||
| cross_entropy = F.reshape(cross_entropy, gt_label_shape) | |||||
| # Hard example mining | |||||
| num_matched_boxes = F.reshape(num_matched_boxes, (-1,)) | |||||
| neg_masked_cross_entropy = F.cast(cross_entropy * (1- mask), mstype.float16) | |||||
| _, loss_idx = self.sort_descend(neg_masked_cross_entropy, self.num_boxes) | |||||
| _, relative_position = self.sort(F.cast(loss_idx, mstype.float16), self.num_boxes) | |||||
| num_neg_boxes = self.minimum(num_matched_boxes * self.neg_pre_positive, self.num_boxes) | |||||
| tile_num_neg_boxes = self.tile(self.expand_dims(num_neg_boxes, -1), (1, self.num_boxes)) | |||||
| top_k_neg_mask = F.cast(self.less(relative_position, tile_num_neg_boxes), mstype.float32) | |||||
| class_loss = self.reduce_sum(cross_entropy * (mask + top_k_neg_mask), 1) | |||||
| return self.reduce_mean(class_loss / F.cast(num_matched_boxes, mstype.float32), 0) | |||||
| class SSDWithLossCell(nn.Cell): | |||||
| """" | |||||
| Provide SSD training loss through network. | |||||
| Args: | |||||
| network (Cell): The training network. | |||||
| config (Class): SSD config. | |||||
| Returns: | |||||
| Tensor, the loss of the network. | |||||
| """ | |||||
| def __init__(self, network, config): | |||||
| super(SSDWithLossCell, self).__init__() | |||||
| self.network = network | |||||
| self.class_loss = ClassificationLoss(config) | |||||
| self.box_loss = LocalizationLoss() | |||||
| def construct(self, x, gt_loc, gt_label, num_matched_boxes): | |||||
| pred_loc, pred_label = self.network(x) | |||||
| loss_cls = self.class_loss(pred_label, gt_label, num_matched_boxes) | |||||
| loss_loc = self.box_loss(pred_loc, gt_loc, gt_label, num_matched_boxes) | |||||
| return loss_cls + loss_loc | |||||
| class TrainingWrapper(nn.Cell): | |||||
| """ | |||||
| Encapsulation class of SSD network training. | |||||
| Append an optimizer to the training network after that the construct | |||||
| function can be called to create the backward graph. | |||||
| Args: | |||||
| network (Cell): The training network. Note that loss function should have been added. | |||||
| optimizer (Optimizer): Optimizer for updating the weights. | |||||
| sens (Number): The adjust parameter. Default: 1.0. | |||||
| """ | |||||
| def __init__(self, network, optimizer, sens=1.0): | |||||
| super(TrainingWrapper, self).__init__(auto_prefix=False) | |||||
| self.network = network | |||||
| self.weights = ms.ParameterTuple(network.trainable_params()) | |||||
| self.optimizer = optimizer | |||||
| self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) | |||||
| self.sens = sens | |||||
| self.reducer_flag = False | |||||
| self.grad_reducer = None | |||||
| self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | |||||
| if self.parallel_mode in [ms.ParallelMode.DATA_PARALLEL, ms.ParallelMode.HYBRID_PARALLEL]: | |||||
| self.reducer_flag = True | |||||
| if self.reducer_flag: | |||||
| mean = context.get_auto_parallel_context("mirror_mean") | |||||
| if auto_parallel_context().get_device_num_is_set(): | |||||
| degree = context.get_auto_parallel_context("device_num") | |||||
| else: | |||||
| degree = get_group_size() | |||||
| self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree) | |||||
| def construct(self, *args): | |||||
| weights = self.weights | |||||
| loss = self.network(*args) | |||||
| sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) | |||||
| grads = self.grad(self.network, weights)(*args, sens) | |||||
| if self.reducer_flag: | |||||
| # apply grad reducer on grads | |||||
| grads = self.grad_reducer(grads) | |||||
| return F.depend(loss, self.optimizer(grads)) | |||||
| class SSDWithMobileNetV2(nn.Cell): | |||||
| """ | |||||
| MobileNetV2 architecture for SSD backbone. | |||||
| Args: | |||||
| width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1. | |||||
| inverted_residual_setting (list): Inverted residual settings. Default is None | |||||
| round_nearest (list): Channel round to. Default is 8 | |||||
| Returns: | |||||
| Tensor, the 13th feature after ConvBNReLU in MobileNetV2. | |||||
| Tensor, the last feature in MobileNetV2. | |||||
| Examples: | |||||
| >>> SSDWithMobileNetV2() | |||||
| """ | |||||
| def __init__(self, width_mult=1.0, inverted_residual_setting=None, round_nearest=8): | |||||
| super(SSDWithMobileNetV2, self).__init__() | |||||
| block = InvertedResidual | |||||
| input_channel = 32 | |||||
| last_channel = 1280 | |||||
| if inverted_residual_setting is None: | |||||
| inverted_residual_setting = [ | |||||
| # t, c, n, s | |||||
| [1, 16, 1, 1], | |||||
| [6, 24, 2, 2], | |||||
| [6, 32, 3, 2], | |||||
| [6, 64, 4, 2], | |||||
| [6, 96, 3, 1], | |||||
| [6, 160, 3, 2], | |||||
| [6, 320, 1, 1], | |||||
| ] | |||||
| if len(inverted_residual_setting[0]) != 4: | |||||
| raise ValueError("inverted_residual_setting should be non-empty " | |||||
| "or a 4-element list, got {}".format(inverted_residual_setting)) | |||||
| #building first layer | |||||
| input_channel = _make_divisible(input_channel * width_mult, round_nearest) | |||||
| self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) | |||||
| features = [ConvBNReLU(3, input_channel, stride=2)] | |||||
| # building inverted residual blocks | |||||
| layer_index = 0 | |||||
| for t, c, n, s in inverted_residual_setting: | |||||
| output_channel = _make_divisible(c * width_mult, round_nearest) | |||||
| for i in range(n): | |||||
| if layer_index == 13: | |||||
| hidden_dim = int(round(input_channel * t)) | |||||
| self.expand_layer_conv_13 = ConvBNReLU(input_channel, hidden_dim, kernel_size=1) | |||||
| stride = s if i == 0 else 1 | |||||
| features.append(block(input_channel, output_channel, stride, expand_ratio=t)) | |||||
| input_channel = output_channel | |||||
| layer_index += 1 | |||||
| # building last several layers | |||||
| features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) | |||||
| self.features_1 = nn.SequentialCell(features[:14]) | |||||
| self.features_2 = nn.SequentialCell(features[14:]) | |||||
| def construct(self, x): | |||||
| out = self.features_1(x) | |||||
| expand_layer_conv_13 = self.expand_layer_conv_13(out) | |||||
| out = self.features_2(out) | |||||
| return expand_layer_conv_13, out | |||||
| def get_out_channels(self): | |||||
| return self.last_channel | |||||
| def ssd_mobilenet_v2(**kwargs): | |||||
| return SSDWithMobileNetV2(**kwargs) | |||||