Merge pull request !1956 from z00378171/mastertags/v0.5.0-beta
| @@ -16,17 +16,17 @@ This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpo | |||
| - Set options in config.py. | |||
| - Run `run_standalone_train.sh` for non-distributed training. | |||
| ``` bash | |||
| sh scripts/run_standalone_train.sh DEVICE_ID EPOCH_SIZE DATA_DIR | |||
| sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH | |||
| ``` | |||
| - Run `run_distribute_train.sh` for distributed training. | |||
| ``` bash | |||
| sh scripts/run_distribute_train.sh DEVICE_NUM EPOCH_SIZE DATA_DIR MINDSPORE_HCCL_CONFIG_PATH | |||
| sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH DATA_PATH | |||
| ``` | |||
| ### Evaluation | |||
| Set options in evaluation_config.py. Make sure the 'data_file' and 'finetune_ckpt' are set to your own path. | |||
| - Run run_eval.sh for evaluation. | |||
| ``` bash | |||
| sh scripts/run_eval.sh DEVICE_ID DATA_DIR | |||
| sh scripts/run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH | |||
| ``` | |||
| ## Options and Parameters | |||
| @@ -49,6 +49,11 @@ config.py: | |||
| decoder_output_stride The ratio of input to output spatial resolution when employing decoder | |||
| to refine segmentation results, default is None. | |||
| image_pyramid Input scales for multi-scale feature extraction, default is None. | |||
| epoch_size Epoch size, default is 6. | |||
| batch_size batch size of input dataset: N, default is 2. | |||
| enable_save_ckpt Enable save checkpoint, default is true. | |||
| save_checkpoint_steps Save checkpoint steps, default is 1000. | |||
| save_checkpoint_num Save checkpoint numbers, default is 1. | |||
| ``` | |||
| @@ -56,11 +61,6 @@ config.py: | |||
| ``` | |||
| Parameters for dataset and network: | |||
| distribute Run distribute, default is false. | |||
| epoch_size Epoch size, default is 6. | |||
| batch_size batch size of input dataset: N, default is 2. | |||
| data_url Train/Evaluation data url, required. | |||
| checkpoint_url Checkpoint path, default is None. | |||
| enable_save_ckpt Enable save checkpoint, default is true. | |||
| save_checkpoint_steps Save checkpoint steps, default is 1000. | |||
| save_checkpoint_num Save checkpoint numbers, default is 1. | |||
| ``` | |||
| @@ -25,9 +25,7 @@ from src.config import config | |||
| parser = argparse.ArgumentParser(description="Deeplabv3 evaluation") | |||
| parser.add_argument('--epoch_size', type=int, default=2, help='Epoch size.') | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | |||
| parser.add_argument('--batch_size', type=int, default=2, help='Batch size.') | |||
| parser.add_argument('--data_url', required=True, default=None, help='Evaluation data url') | |||
| parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path') | |||
| @@ -39,8 +37,8 @@ print(args_opt) | |||
| if __name__ == "__main__": | |||
| args_opt.crop_size = config.crop_size | |||
| args_opt.base_size = config.crop_size | |||
| eval_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="eval") | |||
| net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size, 3, args_opt.crop_size, args_opt.crop_size], | |||
| eval_dataset = create_dataset(args_opt, args_opt.data_url, config.epoch_size, config.batch_size, usage="eval") | |||
| net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size], | |||
| infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates, | |||
| decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride, | |||
| fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid) | |||
| @@ -16,17 +16,21 @@ | |||
| echo "==============================================================================================================" | |||
| echo "Please run the scipt as: " | |||
| echo "bash run_distribute_train.sh DEVICE_NUM EPOCH_SIZE DATA_DIR MINDSPORE_HCCL_CONFIG_PATH" | |||
| echo "for example: bash run_distribute_train.sh 8 40 /path/zh-wiki/ /path/hccl.json" | |||
| echo "bash run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH DATA_PATH" | |||
| echo "for example: bash run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH DATA_PATH [PRETRAINED_CKPT_PATH](option)" | |||
| echo "It is better to use absolute path." | |||
| echo "==============================================================================================================" | |||
| EPOCH_SIZE=$2 | |||
| DATA_DIR=$3 | |||
| DATA_DIR=$2 | |||
| export MINDSPORE_HCCL_CONFIG_PATH=$4 | |||
| export RANK_TABLE_FILE=$4 | |||
| export RANK_SIZE=$1 | |||
| export MINDSPORE_HCCL_CONFIG_PATH=$1 | |||
| export RANK_TABLE_FILE=$1 | |||
| export RANK_SIZE=8 | |||
| PATH_CHECKPOINT="" | |||
| if [ $# == 3 ] | |||
| then | |||
| PATH_CHECKPOINT=$3 | |||
| fi | |||
| cores=`cat /proc/cpuinfo|grep "processor" |wc -l` | |||
| echo "the number of logical core" $cores | |||
| avg_core_per_rank=`expr $cores \/ $RANK_SIZE` | |||
| @@ -55,12 +59,8 @@ do | |||
| env > env.log | |||
| taskset -c $cmdopt python ../train.py \ | |||
| --distribute="true" \ | |||
| --epoch_size=$EPOCH_SIZE \ | |||
| --device_id=$DEVICE_ID \ | |||
| --enable_save_ckpt="true" \ | |||
| --checkpoint_url="" \ | |||
| --save_checkpoint_steps=10000 \ | |||
| --save_checkpoint_num=1 \ | |||
| --checkpoint_url=$PATH_CHECKPOINT \ | |||
| --data_url=$DATA_DIR > log.txt 2>&1 & | |||
| cd ../ | |||
| done | |||
| @@ -15,18 +15,20 @@ | |||
| # ============================================================================ | |||
| echo "==============================================================================================================" | |||
| echo "Please run the scipt as: " | |||
| echo "bash run_eval.sh DEVICE_ID DATA_DIR" | |||
| echo "for example: bash run_eval.sh /path/zh-wiki/ " | |||
| echo "bash run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH" | |||
| echo "for example: bash run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH" | |||
| echo "==============================================================================================================" | |||
| DEVICE_ID=$1 | |||
| DATA_DIR=$2 | |||
| PATH_CHECKPOINT=$3 | |||
| mkdir -p ms_log | |||
| CUR_DIR=`pwd` | |||
| export GLOG_log_dir=${CUR_DIR}/ms_log | |||
| export GLOG_logtostderr=0 | |||
| python evaluation.py \ | |||
| python eval.py \ | |||
| --device_id=$DEVICE_ID \ | |||
| --checkpoint_url="" \ | |||
| --checkpoint_url=$PATH_CHECKPOINT \ | |||
| --data_url=$DATA_DIR > log.txt 2>&1 & | |||
| @@ -15,13 +15,17 @@ | |||
| # ============================================================================ | |||
| echo "==============================================================================================================" | |||
| echo "Please run the scipt as: " | |||
| echo "bash run_standalone_pretrain.sh DEVICE_ID EPOCH_SIZE DATA_DIR" | |||
| echo "for example: bash run_standalone_train.sh 0 40 /path/zh-wiki/ " | |||
| echo "bash run_standalone_pretrain.sh DEVICE_ID DATA_PATH" | |||
| echo "for example: bash run_standalone_train.sh DEVICE_ID DATA_PATH [PRETRAINED_CKPT_PATH](option)" | |||
| echo "==============================================================================================================" | |||
| DEVICE_ID=$1 | |||
| EPOCH_SIZE=$2 | |||
| DATA_DIR=$3 | |||
| DATA_DIR=$2 | |||
| PATH_CHECKPOINT="" | |||
| if [ $# == 3 ] | |||
| then | |||
| PATH_CHECKPOINT=$3 | |||
| fi | |||
| mkdir -p ms_log | |||
| CUR_DIR=`pwd` | |||
| @@ -29,10 +33,6 @@ export GLOG_log_dir=${CUR_DIR}/ms_log | |||
| export GLOG_logtostderr=0 | |||
| python train.py \ | |||
| --distribute="false" \ | |||
| --epoch_size=$EPOCH_SIZE \ | |||
| --device_id=$DEVICE_ID \ | |||
| --enable_save_ckpt="true" \ | |||
| --checkpoint_url="" \ | |||
| --save_checkpoint_steps=10000 \ | |||
| --save_checkpoint_num=1 \ | |||
| --checkpoint_url=$PATH_CHECKPOINT \ | |||
| --data_url=$DATA_DIR > log.txt 2>&1 & | |||
| @@ -29,5 +29,10 @@ config = ed({ | |||
| "fine_tune_batch_norm": False, | |||
| "ignore_label": 255, | |||
| "decoder_output_stride": None, | |||
| "seg_num_classes": 21 | |||
| "seg_num_classes": 21, | |||
| "epoch_size": 6, | |||
| "batch_size": 2, | |||
| "enable_save_ckpt": True, | |||
| "save_checkpoint_steps": 10000, | |||
| "save_checkpoint_num": 1 | |||
| }) | |||
| @@ -16,6 +16,7 @@ | |||
| from PIL import Image | |||
| import mindspore.dataset as de | |||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||
| import numpy as np | |||
| from .ei_dataset import HwVocRawDataset | |||
| from .utils import custom_transforms as tr | |||
| @@ -52,8 +53,8 @@ class DataTransform: | |||
| rhf_tr = tr.RandomHorizontalFlip() | |||
| image, label = rhf_tr(image, label) | |||
| nor_tr = tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) | |||
| image, label = nor_tr(image, label) | |||
| image = np.array(image).astype(np.float32) | |||
| label = np.array(label).astype(np.float32) | |||
| return image, label | |||
| @@ -71,13 +72,13 @@ class DataTransform: | |||
| fsc_tr = tr.FixScaleCrop(crop_size=self.args.crop_size) | |||
| image, label = fsc_tr(image, label) | |||
| nor_tr = tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) | |||
| image, label = nor_tr(image, label) | |||
| image = np.array(image).astype(np.float32) | |||
| label = np.array(label).astype(np.float32) | |||
| return image, label | |||
| def create_dataset(args, data_url, epoch_num=1, batch_size=1, usage="train"): | |||
| def create_dataset(args, data_url, epoch_num=1, batch_size=1, usage="train", shuffle=True): | |||
| """ | |||
| Create Dataset for DeepLabV3. | |||
| @@ -106,7 +107,7 @@ def create_dataset(args, data_url, epoch_num=1, batch_size=1, usage="train"): | |||
| # 1464 samples / batch_size 8 = 183 batches | |||
| # epoch_num is num of steps | |||
| # 3658 steps / 183 = 20 epochs | |||
| if usage == "train": | |||
| if usage == "train" and shuffle: | |||
| dataset = dataset.shuffle(1464) | |||
| dataset = dataset.batch(batch_size, drop_remainder=(usage == "train")) | |||
| dataset = dataset.repeat(count=epoch_num) | |||
| @@ -33,6 +33,7 @@ class Normalize: | |||
| def __call__(self, img, mask): | |||
| img = np.array(img).astype(np.float32) | |||
| mask = np.array(mask).astype(np.float32) | |||
| img = ((img - self.mean) / self.std).astype(np.float32) | |||
| return img, mask | |||
| @@ -27,14 +27,10 @@ from src.config import config | |||
| parser = argparse.ArgumentParser(description="Deeplabv3 training") | |||
| parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.") | |||
| parser.add_argument('--epoch_size', type=int, default=6, help='Epoch size.') | |||
| parser.add_argument('--batch_size', type=int, default=2, help='Batch size.') | |||
| parser.add_argument('--data_url', required=True, default=None, help='Train data url') | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | |||
| parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path') | |||
| parser.add_argument("--enable_save_ckpt", type=str, default="true", help="Enable save checkpoint, default is true.") | |||
| parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, default is 1000.") | |||
| parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.") | |||
| args_opt = parser.parse_args() | |||
| print(args_opt) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) | |||
| @@ -70,16 +66,16 @@ if __name__ == "__main__": | |||
| init() | |||
| args_opt.base_size = config.crop_size | |||
| args_opt.crop_size = config.crop_size | |||
| train_dataset = create_dataset(args_opt, args_opt.data_url, args_opt.epoch_size, args_opt.batch_size, usage="train") | |||
| train_dataset = create_dataset(args_opt, args_opt.data_url, config.epoch_size, config.batch_size, usage="train") | |||
| dataset_size = train_dataset.get_dataset_size() | |||
| time_cb = TimeMonitor(data_size=dataset_size) | |||
| callback = [time_cb, LossCallBack()] | |||
| if args_opt.enable_save_ckpt == "true": | |||
| config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps, | |||
| keep_checkpoint_max=args_opt.save_checkpoint_num) | |||
| if config.enable_save_ckpt: | |||
| config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps, | |||
| keep_checkpoint_max=config.save_checkpoint_num) | |||
| ckpoint_cb = ModelCheckpoint(prefix='checkpoint_deeplabv3', config=config_ck) | |||
| callback.append(ckpoint_cb) | |||
| net = deeplabv3_resnet50(config.seg_num_classes, [args_opt.batch_size, 3, args_opt.crop_size, args_opt.crop_size], | |||
| net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size], | |||
| infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates, | |||
| decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride, | |||
| fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid) | |||
| @@ -88,5 +84,5 @@ if __name__ == "__main__": | |||
| loss = OhemLoss(config.seg_num_classes, config.ignore_label) | |||
| opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay) | |||
| model = Model(net, loss, opt) | |||
| model.train(args_opt.epoch_size, train_dataset, callback) | |||
| model.train(config.epoch_size, train_dataset, callback) | |||
| @@ -0,0 +1,47 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| echo "==============================================================================================================" | |||
| echo "Please run the scipt as: " | |||
| echo "for example: bash run_deeplabv3_ci.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH" | |||
| echo "==============================================================================================================" | |||
| DEVICE_ID=$1 | |||
| DATA_DIR=$2 | |||
| PATH_CHECKPOINT=$3 | |||
| BASE_PATH=$(cd "$(dirname $0)"; pwd) | |||
| unset SLOG_PRINT_TO_STDOUT | |||
| CODE_DIR="./" | |||
| if [ -d ${BASE_PATH}/../../../../model_zoo/deeplabv3 ]; then | |||
| CODE_DIR=${BASE_PATH}/../../../../model_zoo/deeplabv3 | |||
| elif [ -d ${BASE_PATH}/../../model_zoo/deeplabv3 ]; then | |||
| CODE_DIR=${BASE_PATH}/../../model_zoo/deeplabv3 | |||
| else | |||
| echo "[ERROR] code dir is not found" | |||
| fi | |||
| echo $CODE_DIR | |||
| rm -rf ${BASE_PATH}/deeplabv3 | |||
| cp -r ${CODE_DIR} ${BASE_PATH}/deeplabv3 | |||
| cp -f ${BASE_PATH}/train_one_epoch_with_loss.py ${BASE_PATH}/deeplabv3/train_one_epoch_with_loss.py | |||
| cd ${BASE_PATH}/deeplabv3 | |||
| python train_one_epoch_with_loss.py --data_url=$DATA_DIR --checkpoint_url=$PATH_CHECKPOINT --device_id=$DEVICE_ID > train_deeplabv3_ci.log 2>&1 & | |||
| process_pid=`echo $!` | |||
| wait ${process_pid} | |||
| status=`echo $?` | |||
| if [ "${status}" != "0" ]; then | |||
| echo "[ERROR] test deeplabv3 failed. status: ${status}" | |||
| exit 1 | |||
| else | |||
| echo "[INFO] test deeplabv3 success." | |||
| fi | |||
| @@ -0,0 +1,96 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """train.""" | |||
| import argparse | |||
| import time | |||
| from mindspore import context | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore import Model | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.train.callback import Callback | |||
| from src.md_dataset import create_dataset | |||
| from src.losses import OhemLoss | |||
| from src.deeplabv3 import deeplabv3_resnet50 | |||
| from src.config import config | |||
| parser = argparse.ArgumentParser(description="Deeplabv3 training") | |||
| parser.add_argument('--data_url', required=True, default=None, help='Train data url') | |||
| parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") | |||
| parser.add_argument('--checkpoint_url', default=None, help='Checkpoint path') | |||
| args_opt = parser.parse_args() | |||
| print(args_opt) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) | |||
| class LossCallBack(Callback): | |||
| """ | |||
| Monitor the loss in training. | |||
| Note: | |||
| if per_print_times is 0 do not print loss. | |||
| Args: | |||
| per_print_times (int): Print loss every times. Default: 1. | |||
| """ | |||
| def __init__(self, data_size, per_print_times=1): | |||
| super(LossCallBack, self).__init__() | |||
| if not isinstance(per_print_times, int) or per_print_times < 0: | |||
| raise ValueError("print_step must be int and >= 0") | |||
| self.data_size = data_size | |||
| self._per_print_times = per_print_times | |||
| self.time = 1000 | |||
| self.loss = 0 | |||
| def epoch_begin(self, run_context): | |||
| self.epoch_time = time.time() | |||
| def step_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| epoch_mseconds = (time.time() - self.epoch_time) * 1000 | |||
| self.time = epoch_mseconds / self.data_size | |||
| self.loss += cb_params.net_outputs | |||
| print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num, | |||
| str(cb_params.net_outputs))) | |||
| def model_fine_tune(flags, train_net, fix_weight_layer): | |||
| checkpoint_path = flags.checkpoint_url | |||
| if checkpoint_path is None: | |||
| return | |||
| param_dict = load_checkpoint(checkpoint_path) | |||
| load_param_into_net(train_net, param_dict) | |||
| for para in train_net.trainable_params(): | |||
| if fix_weight_layer in para.name: | |||
| para.requires_grad = False | |||
| if __name__ == "__main__": | |||
| start_time = time.time() | |||
| epoch_size = 3 | |||
| args_opt.base_size = config.crop_size | |||
| args_opt.crop_size = config.crop_size | |||
| train_dataset = create_dataset(args_opt, args_opt.data_url, epoch_size, config.batch_size, | |||
| usage="train", shuffle=False) | |||
| dataset_size = train_dataset.get_dataset_size() | |||
| callback = LossCallBack(dataset_size) | |||
| net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size], | |||
| infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates, | |||
| decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride, | |||
| fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid) | |||
| net.set_train() | |||
| model_fine_tune(args_opt, net, 'layer') | |||
| loss = OhemLoss(config.seg_num_classes, config.ignore_label) | |||
| opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay) | |||
| model = Model(net, loss, opt) | |||
| model.train(epoch_size, train_dataset, callback) | |||
| print(time.time() - start_time) | |||
| print("expect loss: ", callback.loss / 3) | |||
| print("expect time: ", callback.time) | |||
| expect_loss = 0.5 | |||
| expect_time = 35 | |||
| assert callback.loss.asnumpy() / 3 <= expect_loss | |||
| assert callback.time <= expect_time | |||