Browse Source

zeroslike dynamic shape no opt

fix ci

fix ci

fix ci

fix ci
tags/v1.1.0
Peilin Wang 5 years ago
parent
commit
d9fb28b9fc
6 changed files with 246 additions and 4 deletions
  1. +41
    -0
      mindspore/ccsrc/backend/kernel_compiler/gpu/arrays/zeroslike_gpu_kernel.cc
  2. +88
    -0
      mindspore/ccsrc/backend/kernel_compiler/gpu/arrays/zeroslike_gpu_kernel.h
  3. +7
    -0
      mindspore/ccsrc/frontend/optimizer/irpass/special_op_eliminate.h
  4. +1
    -1
      mindspore/core/abstract/infer_functions.h
  5. +15
    -3
      mindspore/core/abstract/prim_arrays.cc
  6. +94
    -0
      tests/st/ops/gpu/test_zeroslike_op.py

+ 41
- 0
mindspore/ccsrc/backend/kernel_compiler/gpu/arrays/zeroslike_gpu_kernel.cc View File

@@ -0,0 +1,41 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstdint>

#include "backend/kernel_compiler/gpu/arrays/zeroslike_gpu_kernel.h"

namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
ZerosLikeGpuKernel, bool)

MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
ZerosLikeGpuKernel, int8_t)

MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
ZerosLikeGpuKernel, uint8_t)

MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
ZerosLikeGpuKernel, int32_t)

MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
ZerosLikeGpuKernel, half)

MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ZerosLikeGpuKernel, float)

} // namespace kernel
} // namespace mindspore

+ 88
- 0
mindspore/ccsrc/backend/kernel_compiler/gpu/arrays/zeroslike_gpu_kernel.h View File

@@ -0,0 +1,88 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_ZEROSLIKE_GPU_KERNEL_H
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_ZEROSLIKE_GPU_KERNEL_H

#include <vector>

#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"

namespace mindspore {
namespace kernel {
template <typename T>
class ZerosLikeGpuKernel : public GpuKernel {
public:
ZerosLikeGpuKernel() { ResetResource(); }
~ZerosLikeGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }

bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *output_device_address = GetDeviceAddress<T>(outputs, 0);

CHECK_CUDA_RET_WITH_EXCEPT(
kernel_node_,
// have to use a float literal instead of an int literal beacuse of ambigious half() overload.
cudaMemsetAsync(output_device_address, static_cast<T>(0.0), input_size_ * sizeof(T),
reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemset failed");

return true;
}

bool Init(const CNodePtr &kernel_node) override {
kernel_node_ = kernel_node;

std::vector<size_t> input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
for (size_t i = 0; i < input_shape.size(); i++) {
input_size_ *= input_shape[i];
}

InitSizeLists();

return true;
}

void ResetResource() noexcept override {
kernel_node_ = nullptr;
input_size_ = 1;
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
}

protected:
void InitSizeLists() override {
// allocate space for input even though we don't need to do anything with the input
input_size_list_.push_back(input_size_ * sizeof(T));
output_size_list_.push_back(input_size_ * sizeof(T));
}

private:
CNodePtr kernel_node_;
size_t input_size_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore

#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_ZEROSLIKE_GPU_KERNEL_H

+ 7
- 0
mindspore/ccsrc/frontend/optimizer/irpass/special_op_eliminate.h View File

@@ -195,6 +195,13 @@ class ZeroLikeFillZero : public AnfVisitor {
TypePtr tensor_type_ptr = tensor_abstract->element()->BuildType(); TypePtr tensor_type_ptr = tensor_abstract->element()->BuildType();
std::vector<int64_t> tensor_shape = tensor_abstract->shape()->shape(); std::vector<int64_t> tensor_shape = tensor_abstract->shape()->shape();


// if shape is unknown, don't optimize this operator away
for (const int64_t &dimension : tensor_shape) {
if (dimension < 0) {
return node;
}
}

tensor::TensorPtr new_tensor_ptr = std::make_shared<tensor::Tensor>(tensor_type_ptr->type_id(), tensor_shape); tensor::TensorPtr new_tensor_ptr = std::make_shared<tensor::Tensor>(tensor_type_ptr->type_id(), tensor_shape);
size_t mem_size = GetTypeByte(tensor_type_ptr) * LongToSize(new_tensor_ptr->ElementsNum()); size_t mem_size = GetTypeByte(tensor_type_ptr) * LongToSize(new_tensor_ptr->ElementsNum());
char *data = reinterpret_cast<char *>(new_tensor_ptr->data_c()); char *data = reinterpret_cast<char *>(new_tensor_ptr->data_c());


+ 1
- 1
mindspore/core/abstract/infer_functions.h View File

@@ -275,9 +275,9 @@ AbstractBasePtr InferImplSplit(const AnalysisEnginePtr &, const PrimitivePtr &pr
const AbstractBasePtrList &args_spec_list); const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplSequenceMask(const AnalysisEnginePtr &, const PrimitivePtr &primitive, AbstractBasePtr InferImplSequenceMask(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list); const AbstractBasePtrList &args_spec_list);

AbstractBasePtr InferImplAddN(const AnalysisEnginePtr &, const PrimitivePtr &primitive, AbstractBasePtr InferImplAddN(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list); const AbstractBasePtrList &args_spec_list);

template <typename T> template <typename T>
AbstractBasePtr InferTupleOrListOrDictLen(const std::string &op_name, const AbstractBasePtrList &args_spec_list) { AbstractBasePtr InferTupleOrListOrDictLen(const std::string &op_name, const AbstractBasePtrList &args_spec_list) {
// Inputs: a tuple or list or dict. // Inputs: a tuple or list or dict.


+ 15
- 3
mindspore/core/abstract/prim_arrays.cc View File

@@ -767,9 +767,21 @@ AbstractBasePtr InferImplDynamicShape(const AnalysisEnginePtr &, const Primitive


AbstractBasePtr InferImplZerosLike(const AnalysisEnginePtr &, const PrimitivePtr &primitive, AbstractBasePtr InferImplZerosLike(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) { const AbstractBasePtrList &args_spec_list) {
// Inputs: a tensor.
CheckArgsSize(primitive->name(), args_spec_list, 1);
return args_spec_list[0]->Broaden();
const std::string op_name = primitive->name();
CheckArgsSize(op_name, args_spec_list, 1);
AbstractTensorPtr input_x = CheckArg<AbstractTensor>(op_name, args_spec_list, 0);
ShapeVector x_shape = input_x->shape()->shape();
ShapeVector x_shape_min = input_x->shape()->min_shape();
if (x_shape_min.empty()) {
x_shape_min = x_shape;
}
ShapeVector x_shape_max = input_x->shape()->max_shape();
if (x_shape_max.empty()) {
x_shape_max = x_shape;
}

ShapePtr output_shape = std::make_shared<Shape>(x_shape, x_shape_min, x_shape_max);
return std::make_shared<AbstractTensor>(input_x->element(), output_shape);
} }


AbstractBasePtr InferImplTranspose(const AnalysisEnginePtr &, const PrimitivePtr &primitive, AbstractBasePtr InferImplTranspose(const AnalysisEnginePtr &, const PrimitivePtr &primitive,


+ 94
- 0
tests/st/ops/gpu/test_zeroslike_op.py View File

@@ -20,6 +20,7 @@ import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner


context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")


@@ -74,3 +75,96 @@ def test_ZerosLike():
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert output1.shape == expect1.shape assert output1.shape == expect1.shape


class ZerosLikeDynamicNet(nn.Cell):
def __init__(self):
super(ZerosLikeDynamicNet, self).__init__()
self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
self.zeros_like = P.ZerosLike()

def construct(self, x):
converted_to_dynamic = self.gpu_convert_to_dynamic_shape(x)
return self.zeros_like(converted_to_dynamic)


def zeros_like_dynamic(x):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = ZerosLikeDynamicNet()
return net(x)

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_bool():
x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.bool))
output = zeros_like_dynamic(x)
expected = np.zeros([3, 4, 1, 2, 5])
np.testing.assert_array_equal(output.asnumpy(), expected)

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_int8():
x = Tensor(np.arange(24).reshape(1, 4, 1, 6).astype(np.int8))
output = zeros_like_dynamic(x)
expected = np.zeros([1, 4, 1, 6])
print(output)
np.testing.assert_array_equal(output.asnumpy(), expected)

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_uint8():
x = Tensor(np.arange(30).reshape(3, 2, 5).astype(np.uint8))
output = zeros_like_dynamic(x)
expected = np.zeros([3, 2, 5])
np.testing.assert_array_equal(output.asnumpy(), expected)

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_int32():
x = Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(np.int32))
output = zeros_like_dynamic(x)
expected = np.zeros([2, 2, 2, 2])
np.testing.assert_array_equal(output.asnumpy(), expected)

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_float16():
x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.float16))
output = zeros_like_dynamic(x)
expected = np.zeros([3, 4, 1, 2, 5])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_float32():
x = Tensor(np.arange(63).reshape(3, 7, 3).astype(np.float32))
output = zeros_like_dynamic(x)
expected = np.zeros([3, 7, 3])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_multiple_inputs():
net = ZerosLikeDynamicNet()

x = Tensor(np.arange(4).reshape(4).astype(np.float32))
output = net(x)
expected = np.zeros([4])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)

x = Tensor(np.arange(8).reshape(2, 1, 2, 2).astype(np.uint8))
output = net(x)
expected = np.zeros([2, 1, 2, 2])
np.testing.assert_array_equal(output.asnumpy(), expected)

x = Tensor(np.arange(1).reshape(1).astype(np.float16))
output = net(x)
expected = np.zeros([1])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)

Loading…
Cancel
Save