| @@ -230,7 +230,7 @@ def run_ner(): | |||||
| ds.get_dataset_size(), epoch_num, "ner") | ds.get_dataset_size(), epoch_num, "ner") | ||||
| if args_opt.do_eval.lower() == "true": | if args_opt.do_eval.lower() == "true": | ||||
| ds = create_ner_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=1, | |||||
| ds = create_ner_dataset(batch_size=optimizer_cfg.batch_size, repeat_count=1, | |||||
| assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path, | assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path, | ||||
| schema_file_path=args_opt.schema_file_path, | schema_file_path=args_opt.schema_file_path, | ||||
| do_shuffle=(args_opt.eval_data_shuffle.lower() == "true")) | do_shuffle=(args_opt.eval_data_shuffle.lower() == "true")) | ||||
| @@ -16,8 +16,8 @@ | |||||
| echo "==============================================================================================================" | echo "==============================================================================================================" | ||||
| echo "Please run the scipt as: " | echo "Please run the scipt as: " | ||||
| echo "bash run_distributed_pretrain.sh DATA_DIR RANK_TABLE_FILE" | |||||
| echo "for example: bash run_distributed_pretrain.sh /path/dataset /path/hccl.json" | |||||
| echo "bash run_distributed_pretrain_ascend.sh DATA_DIR RANK_TABLE_FILE" | |||||
| echo "for example: bash run_distributed_pretrain_ascend.sh /path/dataset /path/hccl.json" | |||||
| echo "It is better to use absolute path." | echo "It is better to use absolute path." | ||||
| echo "For hyper parameter, please note that you should customize the scripts: | echo "For hyper parameter, please note that you should customize the scripts: | ||||
| '{CUR_DIR}/scripts/ascend_distributed_launcher/hyper_parameter_config.ini' " | '{CUR_DIR}/scripts/ascend_distributed_launcher/hyper_parameter_config.ini' " | ||||
| @@ -16,8 +16,8 @@ | |||||
| echo "==============================================================================================================" | echo "==============================================================================================================" | ||||
| echo "Please run the scipt as: " | echo "Please run the scipt as: " | ||||
| echo "bash run_standalone_pretrain.sh DEVICE_ID EPOCH_SIZE DATA_DIR SCHEMA_DIR" | |||||
| echo "for example: bash run_standalone_pretrain.sh 0 40 /path/zh-wiki/ /path/Schema.json" | |||||
| echo "bash run_standalone_pretrain_ascend.sh DEVICE_ID EPOCH_SIZE DATA_DIR SCHEMA_DIR" | |||||
| echo "for example: bash run_standalone_pretrain_ascend.sh 0 40 /path/zh-wiki/ /path/Schema.json" | |||||
| echo "==============================================================================================================" | echo "==============================================================================================================" | ||||
| DEVICE_ID=$1 | DEVICE_ID=$1 | ||||
| @@ -542,7 +542,7 @@ class BertAttention(nn.Cell): | |||||
| attention_probs_r = self.reshape( | attention_probs_r = self.reshape( | ||||
| attention_probs_t, | attention_probs_t, | ||||
| (self.from_seq_length, | (self.from_seq_length, | ||||
| self.batch_num, | |||||
| -1, | |||||
| self.to_seq_length)) | self.to_seq_length)) | ||||
| # value_position_scores is [F, B * N, H] | # value_position_scores is [F, B * N, H] | ||||
| value_position_scores = self.matmul(attention_probs_r, | value_position_scores = self.matmul(attention_probs_r, | ||||
| @@ -550,7 +550,7 @@ class BertAttention(nn.Cell): | |||||
| # value_position_scores_r is [F, B, N, H] | # value_position_scores_r is [F, B, N, H] | ||||
| value_position_scores_r = self.reshape(value_position_scores, | value_position_scores_r = self.reshape(value_position_scores, | ||||
| (self.from_seq_length, | (self.from_seq_length, | ||||
| self.batch_size, | |||||
| -1, | |||||
| self.num_attention_heads, | self.num_attention_heads, | ||||
| self.size_per_head)) | self.size_per_head)) | ||||
| # value_position_scores_r_t is [B, N, F, H] | # value_position_scores_r_t is [B, N, F, H] | ||||