| @@ -152,7 +152,7 @@ sh scripts/run_distribute_train_gpu.sh DATA_PATH | |||||
| ### Result | ### Result | ||||
| Training result will be stored in the example path. Checkpoints will be stored at `ckpt_path` by default, and training log will be redirected to `./log.txt` like followings. | |||||
| Training result will be stored in the example path. Checkpoints will be stored at `ckpt_path` by default, and training log will be redirected to `./log.txt` like following. | |||||
| - Ascend | - Ascend | ||||
| @@ -209,7 +209,7 @@ You can start training using python or shell scripts. The usage of shell scripts | |||||
| ### Result | ### Result | ||||
| Evaluation result will be stored in the example path, you can find result like the followings in `eval.log`. | |||||
| Evaluation result will be stored in the example path, you can find result like the following in `eval.log`. | |||||
| - Ascend | - Ascend | ||||
| @@ -243,7 +243,7 @@ class DetectionEngine(): | |||||
| self.results[img_id][coco_clsi].append([x_lefti, y_lefti, wi, hi, confi]) | self.results[img_id][coco_clsi].append([x_lefti, y_lefti, wi, hi, confi]) | ||||
| def conver_testing_shape(args_test): | |||||
| def convert_testing_shape(args_test): | |||||
| testing_shape = [int(args_test.testing_shape), int(args_test.testing_shape)] | testing_shape = [int(args_test.testing_shape), int(args_test.testing_shape)] | ||||
| return testing_shape | return testing_shape | ||||
| @@ -296,7 +296,7 @@ def test(): | |||||
| config = ConfigYOLOV4CspDarkNet53() | config = ConfigYOLOV4CspDarkNet53() | ||||
| if args.testing_shape: | if args.testing_shape: | ||||
| config.test_img_shape = conver_testing_shape(args) | |||||
| config.test_img_shape = convert_testing_shape(args) | |||||
| data_txt = os.path.join(args.data_dir, 'testdev2017.txt') | data_txt = os.path.join(args.data_dir, 'testdev2017.txt') | ||||
| ds, data_size = create_yolo_datasetv2(data_root, data_txt=data_txt, batch_size=args.per_batch_size, | ds, data_size = create_yolo_datasetv2(data_root, data_txt=data_txt, batch_size=args.per_batch_size, | ||||
| @@ -70,8 +70,8 @@ def nms(boxes, threshold=0.5): | |||||
| intersect_area = intersect_w * intersect_h | intersect_area = intersect_w * intersect_h | ||||
| ovr = intersect_area / (areas[i] + areas[order[1:]] - intersect_area) | ovr = intersect_area / (areas[i] + areas[order[1:]] - intersect_area) | ||||
| indexes = np.where(ovr <= threshold)[0] | |||||
| order = order[indexes + 1] | |||||
| indices = np.where(ovr <= threshold)[0] | |||||
| order = order[indices + 1] | |||||
| return reserved_boxes | return reserved_boxes | ||||