|
|
|
@@ -234,7 +234,7 @@ class Softsign(PrimitiveWithInfer): |
|
|
|
\text{output} = \frac{\text{input_x}}{1 + \abs{\text{input_x}}}, |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **input_x** (Tensor) - The input tensor whose data type should be float. |
|
|
|
- **input_x** (Tensor) - The input tensor whose data type should be float16 or float32. |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor, with the same type and shape as the `input_x`. |
|
|
|
@@ -255,7 +255,7 @@ class Softsign(PrimitiveWithInfer): |
|
|
|
return input_x |
|
|
|
|
|
|
|
def infer_dtype(self, input_x): |
|
|
|
validator.check_tensor_type_same({'input_x': input_x}, mstype.float_type, self.name) |
|
|
|
validator.check_tensor_type_same({'input_x': input_x}, [mstype.float16, mstype.float32], self.name) |
|
|
|
return input_x |
|
|
|
|
|
|
|
|
|
|
|
@@ -4730,19 +4730,19 @@ class CTCLoss(PrimitiveWithInfer): |
|
|
|
preprocess_collapse_repeated (bool): If True, repeated labels are collapsed prior to the CTC calculation. |
|
|
|
Default: False. |
|
|
|
ctc_merge_repeated (bool): If False, during CTC calculation, repeated non-blank labels will not be merged |
|
|
|
and are interpreted as individual labels. This is a simplfied version if CTC. |
|
|
|
and are interpreted as individual labels. This is a simplfied version of CTC. |
|
|
|
Default: True. |
|
|
|
ignore_longer_outputs_than_inputs (bool): If True, sequences with longer outputs than inputs will be ignored. |
|
|
|
Default: False. |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **inputs** (Tensor) - The input Tensor should be a `3-D` tensor whose shape is |
|
|
|
:math:`(max_time, batch_size, num_class)`. `num_class` should be `num_labels + 1` classes, `num_labels` |
|
|
|
indicates the number of actual labels. Blank labels are reserved. |
|
|
|
:math:`(max_time, batch_size, num_classes)`. `num_classes` should be `num_labels + 1` classes, `num_labels` |
|
|
|
indicates the number of actual labels. Blank labels are reserved. Default blank label is `num_classes - 1`. |
|
|
|
- **labels_indices** (Tensor) - The indices of labels. `labels_indices[i, :] == [b, t]` means `labels_values[i]` |
|
|
|
stores the id for `(batch b, time t)`. The type must be int64 and rank must be 2. |
|
|
|
- **labels_values** (Tensor) - A `1-D` input tensor. The values associated with the given batch and time. The |
|
|
|
type must be int32. `labels_values[i]` must in the range of `[0, num_class)`. |
|
|
|
type must be int32. `labels_values[i]` must in the range of `[0, num_classes)`. |
|
|
|
- **sequence_length** (Tensor) - A tensor containing sequence lengths with the shape of :math:`(batch_size)`. |
|
|
|
The type must be int32. Each value in the tensor should not greater than `max_time`. |
|
|
|
|
|
|
|
|