| @@ -510,12 +510,8 @@ gene_ocl_program() { | |||
| build_opencl() { | |||
| cd ${BASEPATH} | |||
| if [[ ! -d "third_party/OpenCL-Headers" ]]; then | |||
| git submodule update --init third_party/OpenCL-Headers | |||
| fi | |||
| if [[ ! -d "third_party/OpenCL-CLHPP" ]]; then | |||
| git submodule update --init third_party/OpenCL-CLHPP | |||
| fi | |||
| git submodule update --init third_party/OpenCL-Headers | |||
| git submodule update --init third_party/OpenCL-CLHPP | |||
| if [[ "${OPENCL_OFFLINE_COMPILE}" == "on" ]]; then | |||
| gene_ocl_program | |||
| else | |||
| @@ -13,19 +13,9 @@ | |||
| __constant sampler_t smp_edge = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; | |||
| __constant sampler_t smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_NONE | CLK_FILTER_NEAREST; | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void DepthwiseConv2d_NC4HW4( | |||
| __global FLT4* src_data, | |||
| __global FLT4* filters, | |||
| __global FLT4* biases, | |||
| float relu_clip1, | |||
| __global FLT4* dst_data, | |||
| int2 kernel_size, | |||
| int2 stride, | |||
| int2 padding, | |||
| int2 dilation, | |||
| int4 src_size, | |||
| int4 dst_size | |||
| ) { | |||
| __kernel void DepthwiseConv2d_NC4HW4(__global FLT4 *src_data, __global FLT4 *filters, __global FLT4 *biases, | |||
| float relu_clip1, __global FLT4 *dst_data, int2 kernel_size, int2 stride, | |||
| int2 padding, int2 dilation, int4 src_size, int4 dst_size) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| @@ -42,31 +32,21 @@ __global FLT4* dst_data, | |||
| bool outside_x = x_c < 0 || x_c >= src_size.x; | |||
| if (!outside_x && !outside_y) { | |||
| FLT4 f = filters[fx_c]; | |||
| FLT4 src_final =src_data[(((Z) * src_size.y + (y_c)) * src_size.x + (x_c))]; | |||
| FLT4 src_final = src_data[(((Z)*src_size.y + (y_c)) * src_size.x + (x_c))]; | |||
| r += TO_ACCUM_TYPE(src_final * f); | |||
| }; | |||
| } | |||
| fx_c++; | |||
| } | |||
| } | |||
| FLT4 bias_val = biases[Z]; | |||
| FLT4 res0 = TO_FLT4(r) + bias_val; | |||
| res0 = clamp(res0, (FLT)(0.0f), (FLT)(relu_clip1)); | |||
| dst_data[(((Z) * dst_size.y + (Y)) * dst_size.x + (X))] = res0; | |||
| dst_data[(((Z)*dst_size.y + (Y)) * dst_size.x + (X))] = res0; | |||
| } | |||
| __kernel void DepthwiseConv2d_NHWC4( | |||
| __global FLT4* src_data, | |||
| __global FLT4* filters, | |||
| __global FLT4* biases, | |||
| float relu_clip1, | |||
| __global FLT4* dst_data, | |||
| int2 kernel_size, | |||
| int2 stride, | |||
| int2 padding, | |||
| int2 dilation, | |||
| int4 src_size, | |||
| int4 dst_size | |||
| ) { | |||
| __kernel void DepthwiseConv2d_NHWC4(__global FLT4 *src_data, __global FLT4 *filters, __global FLT4 *biases, | |||
| float relu_clip1, __global FLT4 *dst_data, int2 kernel_size, int2 stride, | |||
| int2 padding, int2 dilation, int4 src_size, int4 dst_size) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| @@ -83,9 +63,9 @@ __global FLT4* dst_data, | |||
| bool outside_x = x_c < 0 || x_c >= src_size.x; | |||
| if (!outside_x && !outside_y) { | |||
| FLT4 f = filters[fx_c]; | |||
| FLT4 src_final =src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| FLT4 src_final = src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| r += TO_ACCUM_TYPE(src_final * f); | |||
| }; | |||
| } | |||
| fx_c++; | |||
| } | |||
| } | |||
| @@ -93,4 +73,4 @@ __global FLT4* dst_data, | |||
| FLT4 res0 = TO_FLT4(r) + bias_val; | |||
| res0 = clamp(res0, (FLT)(0.0f), (FLT)(relu_clip1)); | |||
| dst_data[((Y * dst_size.x + X) * dst_size.z + Z)] = res0; | |||
| } | |||
| } | |||
| @@ -1,9 +1,8 @@ | |||
| #pragma OPENCL EXTENSION cl_khr_fp16 : enable | |||
| #define FLT4 half4 | |||
| #define FLT16 half16 | |||
| __kernel void MatMul(__global FLT4 *x, __global FLT16 *weight, | |||
| __global FLT4 *buffer, __global FLT4 *bias, int2 offset_ci, | |||
| int2 offset_co, int has_bias) { | |||
| __kernel void MatMul(__global FLT4 *x, __global FLT16 *weight, __global FLT4 *buffer, __global FLT4 *bias, | |||
| int2 offset_ci, int2 offset_co, int has_bias) { | |||
| int2 gid = (int2)(get_global_id(0), get_global_id(1)); | |||
| int2 lid = (int2)(get_local_id(0), get_local_id(1)); | |||
| FLT4 s = (FLT4)(0.0f); | |||
| @@ -29,4 +28,4 @@ __kernel void MatMul(__global FLT4 *x, __global FLT16 *weight, | |||
| buffer[gid.x] = s; | |||
| // memory pollution? or protected by opencl | |||
| } | |||
| } | |||
| } | |||
| @@ -31,7 +31,6 @@ __kernel void AvgPooling2d(__global float4 *input, __global float4 *output, cons | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void AvgPooling2dImage2d(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape, | |||
| const int4 output_shape, const int2 stride, const int2 kernel_size, | |||
| const int2 padding) { | |||
| @@ -63,4 +62,4 @@ __kernel void AvgPooling2dImage2d(__read_only image2d_t input, __write_only imag | |||
| } | |||
| float4 result = convert_float4(r / window_size); | |||
| write_imagef(output, (int2)(X, Y * output_shape.w + Z), result); | |||
| } | |||
| } | |||
| @@ -51,4 +51,4 @@ __kernel void Concat3input(__global float *input0, __global float *input1, __glo | |||
| output[index_output] = input2[input_idx]; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| @@ -1,191 +1,150 @@ | |||
| #define CI_TILE 4 | |||
| #define CO_TILE 4 | |||
| #define UP_DIV(x, y) (((x) + (y) - (1)) / (y)) | |||
| //#define __global | |||
| //#pragma OPENCL EXTENSION cl_arm_printf : enable | |||
| __kernel void convolution_NHWC_OHWI(__global float *input, | |||
| __global float *weight, | |||
| __global float *bias, | |||
| // #define __global | |||
| // #pragma OPENCL EXTENSION cl_arm_printf : enable | |||
| __kernel void convolution_NHWC_OHWI(__global float *input, __global float *weight, __global float *bias, | |||
| __global float *output, | |||
| const int4 input_shape, // NHWC | |||
| const int4 output_shape, // NHWC | |||
| const int4 kernel_stride, // kernelHW_strideHW | |||
| const int4 pad) // top bottom left right | |||
| { | |||
| int ow = get_global_id(0); | |||
| int oh = get_global_id(1); | |||
| int co_slice = get_global_id(2); | |||
| const int4 input_shape, // NHWC | |||
| const int4 output_shape, // NHWC | |||
| const int4 kernel_stride, // kernelHW_strideHW | |||
| const int4 pad) { | |||
| int ow = get_global_id(0); | |||
| int oh = get_global_id(1); | |||
| int co_slice = get_global_id(2); | |||
| int CI = input_shape.w, IH = input_shape.y, IW = input_shape.z; | |||
| int CO = output_shape.w, OH = output_shape.y, OW = output_shape.z; | |||
| int KH = kernel_stride.x, KW = kernel_stride.y; | |||
| int strideH = kernel_stride.z, strideW = kernel_stride.w; | |||
| int padTop = pad.x, padLeft = pad.z; | |||
| int CI_SLICES = UP_DIV(CI, CI_TILE); | |||
| int CO_SLICES = UP_DIV(CO, CO_TILE); | |||
| int CI = input_shape.w, IH = input_shape.y, IW = input_shape.z; | |||
| int CO = output_shape.w, OH = output_shape.y, OW = output_shape.z; | |||
| int KH = kernel_stride.x, KW = kernel_stride.y; | |||
| int strideH = kernel_stride.z, strideW = kernel_stride.w; | |||
| int padTop = pad.x, padLeft = pad.z; | |||
| int CI_SLICES = UP_DIV(CI, CI_TILE); | |||
| int CO_SLICES = UP_DIV(CO, CO_TILE); | |||
| if (oh >= OH || ow >= OW || co_slice >= CO_SLICES) | |||
| return; | |||
| if (oh >= OH || ow >= OW || co_slice >= CO_SLICES) return; | |||
| float4 acc = (float4)(0.0f, 0.0f, 0.0f, 0.0f); | |||
| for (int kh = 0; kh < KH; ++kh) | |||
| { | |||
| int ih = kh + oh * strideH - padTop; | |||
| for (int kw = 0; kw < KW; ++kw) | |||
| { | |||
| int iw = kw + ow * strideW - padLeft; | |||
| for (int ci_slice = 0; ci_slice < CI_SLICES; ++ci_slice) | |||
| { | |||
| for (int ci_inner = 0; ci_inner < CI_TILE; ++ci_inner) | |||
| { | |||
| int ci = ci_slice * CI_TILE + ci_inner; | |||
| if (ci >= CI) | |||
| break; | |||
| float4 acc = (float4)(0.0f, 0.0f, 0.0f, 0.0f); | |||
| for (int kh = 0; kh < KH; ++kh) { | |||
| int ih = kh + oh * strideH - padTop; | |||
| for (int kw = 0; kw < KW; ++kw) { | |||
| int iw = kw + ow * strideW - padLeft; | |||
| for (int ci_slice = 0; ci_slice < CI_SLICES; ++ci_slice) { | |||
| for (int ci_inner = 0; ci_inner < CI_TILE; ++ci_inner) { | |||
| int ci = ci_slice * CI_TILE + ci_inner; | |||
| if (ci >= CI) break; | |||
| int input_idx = ih * IW * CI + iw * CI + ci; | |||
| float value = 0; | |||
| if (ih < 0 || ih >= IH || iw < 0 || iw >= IW) | |||
| value = 0; | |||
| else | |||
| value = input[input_idx]; | |||
| int input_idx = ih * IW * CI + iw * CI + ci; | |||
| float value = 0; | |||
| if (ih < 0 || ih >= IH || iw < 0 || iw >= IW) | |||
| value = 0; | |||
| else | |||
| value = input[input_idx]; | |||
| int CO_OFFSET = KH * KW * CI; | |||
| int weight_idx = (co_slice * CO_TILE) * CO_OFFSET + | |||
| kh * KW * CI + | |||
| kw * CI + | |||
| ci; | |||
| acc.x += weight[weight_idx + 0 * CO_OFFSET] * value; | |||
| acc.y += weight[weight_idx + 1 * CO_OFFSET] * value; | |||
| acc.z += weight[weight_idx + 2 * CO_OFFSET] * value; | |||
| acc.w += weight[weight_idx + 3 * CO_OFFSET] * value; | |||
| } | |||
| } | |||
| int CO_OFFSET = KH * KW * CI; | |||
| int weight_idx = (co_slice * CO_TILE) * CO_OFFSET + kh * KW * CI + kw * CI + ci; | |||
| acc.x += weight[weight_idx + 0 * CO_OFFSET] * value; | |||
| acc.y += weight[weight_idx + 1 * CO_OFFSET] * value; | |||
| acc.z += weight[weight_idx + 2 * CO_OFFSET] * value; | |||
| acc.w += weight[weight_idx + 3 * CO_OFFSET] * value; | |||
| } | |||
| } | |||
| } | |||
| int output_idx = oh * OW * CO + ow * CO + (co_slice * CO_TILE); | |||
| if (co_slice < CO_SLICES - 1 || CO % CO_TILE == 0) | |||
| { | |||
| output[output_idx + 0] = acc.x + bias[co_slice * CO_TILE + 0]; | |||
| output[output_idx + 1] = acc.y + bias[co_slice * CO_TILE + 1]; | |||
| output[output_idx + 2] = acc.z + bias[co_slice * CO_TILE + 2]; | |||
| output[output_idx + 3] = acc.w + bias[co_slice * CO_TILE + 3]; | |||
| } | |||
| else if (CO % CO_TILE == 1) | |||
| { | |||
| output[output_idx + 0] = acc.x + bias[co_slice * CO_TILE + 0]; | |||
| } | |||
| else if (CO % CO_TILE == 2) | |||
| { | |||
| output[output_idx + 0] = acc.x + bias[co_slice * CO_TILE + 0]; | |||
| output[output_idx + 1] = acc.y + bias[co_slice * CO_TILE + 1]; | |||
| } | |||
| else if (CO % CO_TILE == 3) | |||
| { | |||
| output[output_idx + 0] = acc.x + bias[co_slice * CO_TILE + 0]; | |||
| output[output_idx + 1] = acc.y + bias[co_slice * CO_TILE + 1]; | |||
| output[output_idx + 2] = acc.z + bias[co_slice * CO_TILE + 2]; | |||
| } | |||
| } | |||
| int output_idx = oh * OW * CO + ow * CO + (co_slice * CO_TILE); | |||
| if (co_slice < CO_SLICES - 1 || CO % CO_TILE == 0) { | |||
| output[output_idx + 0] = acc.x + bias[co_slice * CO_TILE + 0]; | |||
| output[output_idx + 1] = acc.y + bias[co_slice * CO_TILE + 1]; | |||
| output[output_idx + 2] = acc.z + bias[co_slice * CO_TILE + 2]; | |||
| output[output_idx + 3] = acc.w + bias[co_slice * CO_TILE + 3]; | |||
| } else if (CO % CO_TILE == 1) { | |||
| output[output_idx + 0] = acc.x + bias[co_slice * CO_TILE + 0]; | |||
| } else if (CO % CO_TILE == 2) { | |||
| output[output_idx + 0] = acc.x + bias[co_slice * CO_TILE + 0]; | |||
| output[output_idx + 1] = acc.y + bias[co_slice * CO_TILE + 1]; | |||
| } else if (CO % CO_TILE == 3) { | |||
| output[output_idx + 0] = acc.x + bias[co_slice * CO_TILE + 0]; | |||
| output[output_idx + 1] = acc.y + bias[co_slice * CO_TILE + 1]; | |||
| output[output_idx + 2] = acc.z + bias[co_slice * CO_TILE + 2]; | |||
| } | |||
| } | |||
| //#pragma OPENCL EXTENSION cl_khr_fp16 : enable | |||
| //#define FLT4 half4 | |||
| // #pragma OPENCL EXTENSION cl_khr_fp16 : enable | |||
| // #define FLT4 half4 | |||
| #define FLT4 float4 | |||
| __kernel void convolution_NHWC4_OHWIIO_float8(__global FLT4 *input, | |||
| __global FLT4 *weight, | |||
| __global FLT4 *bias, | |||
| __kernel void convolution_NHWC4_OHWIIO_float8(__global FLT4 *input, __global FLT4 *weight, __global FLT4 *bias, | |||
| __global FLT4 *output, | |||
| const int4 input_shape, // NHWC | |||
| const int4 output_shape, // NHWC | |||
| const int4 kernel_stride, // kernelHW_strideHW | |||
| const int4 pad) // top bottom left right | |||
| { | |||
| int oh = get_global_id(0); // [0, OH) | |||
| int ow = get_global_id(1); // [0, OW) | |||
| int co_slice = get_global_id(2); // [0, UP_DIV(CO, CO_TILE) ) | |||
| const int4 input_shape, // NHWC | |||
| const int4 output_shape, // NHWC | |||
| const int4 kernel_stride, // kernelHW_strideHW | |||
| const int4 pad) { | |||
| int oh = get_global_id(0); // [0, OH) | |||
| int ow = get_global_id(1); // [0, OW) | |||
| int co_slice = get_global_id(2); // [0, UP_DIV(CO, CO_TILE) ) | |||
| int CI = input_shape.w, IH = input_shape.y, IW = input_shape.z; | |||
| int CO = output_shape.w, OH = output_shape.y, OW = output_shape.z; | |||
| int CI_SLICES = UP_DIV(CI, CI_TILE); | |||
| int CO_SLICES = UP_DIV(CO, CO_TILE); | |||
| int KH = kernel_stride.x, KW = kernel_stride.y; | |||
| int strideH = kernel_stride.z, strideW = kernel_stride.w; | |||
| int padTop = pad.x, padLeft = pad.z; | |||
| int CI = input_shape.w, IH = input_shape.y, IW = input_shape.z; | |||
| int CO = output_shape.w, OH = output_shape.y, OW = output_shape.z; | |||
| int CI_SLICES = UP_DIV(CI, CI_TILE); | |||
| int CO_SLICES = UP_DIV(CO, CO_TILE); | |||
| int KH = kernel_stride.x, KW = kernel_stride.y; | |||
| int strideH = kernel_stride.z, strideW = kernel_stride.w; | |||
| int padTop = pad.x, padLeft = pad.z; | |||
| if (oh >= OH || ow >= OW || 2 * co_slice >= CO_SLICES) | |||
| return; | |||
| if (2 * co_slice + 1 >= CO_SLICES) | |||
| { | |||
| FLT4 out0_c4 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f); | |||
| __global FLT4 *w0_ic1_oc4 = weight + (2 * co_slice + 0) * KH * KW * CI_SLICES * CI_TILE; | |||
| for (int kh = 0; kh < KH; ++kh) | |||
| { | |||
| int ih = kh + oh * strideH - padTop; | |||
| for (int kw = 0; kw < KW; ++kw) | |||
| { | |||
| int iw = kw + ow * strideW - padLeft; | |||
| if (ih >= 0 && ih < IH && iw >= 0 && iw < IW) | |||
| { | |||
| for (int ci_slice = 0; ci_slice < CI_SLICES; ci_slice++) | |||
| { | |||
| FLT4 in_c4 = input[ih * IW * CI_SLICES + iw * CI_SLICES + ci_slice]; | |||
| out0_c4 += w0_ic1_oc4[0] * in_c4.x; | |||
| out0_c4 += w0_ic1_oc4[1] * in_c4.y; | |||
| out0_c4 += w0_ic1_oc4[2] * in_c4.z; | |||
| out0_c4 += w0_ic1_oc4[3] * in_c4.w; | |||
| w0_ic1_oc4 += 4; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| w0_ic1_oc4 += 4 * CI_SLICES; | |||
| } | |||
| } | |||
| if (oh >= OH || ow >= OW || 2 * co_slice >= CO_SLICES) return; | |||
| if (2 * co_slice + 1 >= CO_SLICES) { | |||
| FLT4 out0_c4 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f); | |||
| __global FLT4 *w0_ic1_oc4 = weight + (2 * co_slice + 0) * KH * KW * CI_SLICES * CI_TILE; | |||
| for (int kh = 0; kh < KH; ++kh) { | |||
| int ih = kh + oh * strideH - padTop; | |||
| for (int kw = 0; kw < KW; ++kw) { | |||
| int iw = kw + ow * strideW - padLeft; | |||
| if (ih >= 0 && ih < IH && iw >= 0 && iw < IW) { | |||
| for (int ci_slice = 0; ci_slice < CI_SLICES; ci_slice++) { | |||
| FLT4 in_c4 = input[ih * IW * CI_SLICES + iw * CI_SLICES + ci_slice]; | |||
| out0_c4 += w0_ic1_oc4[0] * in_c4.x; | |||
| out0_c4 += w0_ic1_oc4[1] * in_c4.y; | |||
| out0_c4 += w0_ic1_oc4[2] * in_c4.z; | |||
| out0_c4 += w0_ic1_oc4[3] * in_c4.w; | |||
| w0_ic1_oc4 += 4; | |||
| } | |||
| } else { | |||
| w0_ic1_oc4 += 4 * CI_SLICES; | |||
| } | |||
| output[oh * OW * CO_SLICES + ow * CO_SLICES + 2 * co_slice + 0] = out0_c4 + bias[2 * co_slice + 0]; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| FLT4 out0_c4 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f); | |||
| FLT4 out1_c4 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f); | |||
| __global FLT4 *w0_ic1_oc4 = weight + (2 * co_slice + 0) * KH * KW * CI_SLICES * CI_TILE; | |||
| __global FLT4 *w1_ic1_oc4 = weight + (2 * co_slice + 1) * KH * KW * CI_SLICES * CI_TILE; | |||
| for (int kh = 0; kh < KH; ++kh) | |||
| { | |||
| int ih = kh + oh * strideH - padTop; | |||
| for (int kw = 0; kw < KW; ++kw) | |||
| { | |||
| int iw = kw + ow * strideW - padLeft; | |||
| if (ih >= 0 && ih < IH && iw >= 0 && iw < IW) | |||
| { | |||
| int idx = ih * IW * CI_SLICES + iw * CI_SLICES; | |||
| for (int ci_slice = 0; ci_slice < CI_SLICES; ci_slice++) | |||
| { | |||
| FLT4 in_c4 = input[idx + ci_slice]; | |||
| output[oh * OW * CO_SLICES + ow * CO_SLICES + 2 * co_slice + 0] = out0_c4 + bias[2 * co_slice + 0]; | |||
| } else { | |||
| FLT4 out0_c4 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f); | |||
| FLT4 out1_c4 = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f); | |||
| __global FLT4 *w0_ic1_oc4 = weight + (2 * co_slice + 0) * KH * KW * CI_SLICES * CI_TILE; | |||
| __global FLT4 *w1_ic1_oc4 = weight + (2 * co_slice + 1) * KH * KW * CI_SLICES * CI_TILE; | |||
| for (int kh = 0; kh < KH; ++kh) { | |||
| int ih = kh + oh * strideH - padTop; | |||
| for (int kw = 0; kw < KW; ++kw) { | |||
| int iw = kw + ow * strideW - padLeft; | |||
| if (ih >= 0 && ih < IH && iw >= 0 && iw < IW) { | |||
| int idx = ih * IW * CI_SLICES + iw * CI_SLICES; | |||
| for (int ci_slice = 0; ci_slice < CI_SLICES; ci_slice++) { | |||
| FLT4 in_c4 = input[idx + ci_slice]; | |||
| out0_c4 += w0_ic1_oc4[0] * in_c4.x; | |||
| out0_c4 += w0_ic1_oc4[1] * in_c4.y; | |||
| out0_c4 += w0_ic1_oc4[2] * in_c4.z; | |||
| out0_c4 += w0_ic1_oc4[3] * in_c4.w; | |||
| w0_ic1_oc4 += 4; | |||
| out0_c4 += w0_ic1_oc4[0] * in_c4.x; | |||
| out0_c4 += w0_ic1_oc4[1] * in_c4.y; | |||
| out0_c4 += w0_ic1_oc4[2] * in_c4.z; | |||
| out0_c4 += w0_ic1_oc4[3] * in_c4.w; | |||
| w0_ic1_oc4 += 4; | |||
| out1_c4 += w1_ic1_oc4[0] * in_c4.x; | |||
| out1_c4 += w1_ic1_oc4[1] * in_c4.y; | |||
| out1_c4 += w1_ic1_oc4[2] * in_c4.z; | |||
| out1_c4 += w1_ic1_oc4[3] * in_c4.w; | |||
| w1_ic1_oc4 += 4; | |||
| } | |||
| } | |||
| else | |||
| { | |||
| w0_ic1_oc4 += 4 * CI_SLICES; | |||
| w1_ic1_oc4 += 4 * CI_SLICES; | |||
| } | |||
| } | |||
| out1_c4 += w1_ic1_oc4[0] * in_c4.x; | |||
| out1_c4 += w1_ic1_oc4[1] * in_c4.y; | |||
| out1_c4 += w1_ic1_oc4[2] * in_c4.z; | |||
| out1_c4 += w1_ic1_oc4[3] * in_c4.w; | |||
| w1_ic1_oc4 += 4; | |||
| } | |||
| } else { | |||
| w0_ic1_oc4 += 4 * CI_SLICES; | |||
| w1_ic1_oc4 += 4 * CI_SLICES; | |||
| } | |||
| output[oh * OW * CO_SLICES + ow * CO_SLICES + 2 * co_slice + 0] = out0_c4 + bias[2 * co_slice + 0]; | |||
| output[oh * OW * CO_SLICES + ow * CO_SLICES + 2 * co_slice + 1] = out1_c4 + bias[2 * co_slice + 1]; | |||
| } | |||
| } | |||
| } | |||
| output[oh * OW * CO_SLICES + ow * CO_SLICES + 2 * co_slice + 0] = out0_c4 + bias[2 * co_slice + 0]; | |||
| output[oh * OW * CO_SLICES + ow * CO_SLICES + 2 * co_slice + 1] = out1_c4 + bias[2 * co_slice + 1]; | |||
| } | |||
| } | |||
| @@ -8,18 +8,9 @@ | |||
| #define TO_FLT4 convert_float4 | |||
| #endif | |||
| __constant sampler_t sampler_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void DepthwiseConv2d_IMG_NC4HW4( | |||
| __read_only image2d_t src_data, | |||
| __global FLT4* filter, | |||
| __global FLT4* bias, | |||
| float relu_clip1, | |||
| __write_only image2d_t dst_data, | |||
| int2 kernel_size, | |||
| int2 stride, | |||
| int2 padding, | |||
| int2 dilation, | |||
| int4 src_size, | |||
| int4 dst_size) { | |||
| __kernel void DepthwiseConv2d_IMG_NC4HW4(__read_only image2d_t src_data, __global FLT4 *filter, __global FLT4 *bias, | |||
| float relu_clip1, __write_only image2d_t dst_data, int2 kernel_size, | |||
| int2 stride, int2 padding, int2 dilation, int4 src_size, int4 dst_size) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| @@ -36,32 +27,23 @@ __write_only image2d_t dst_data, | |||
| bool outside_x = x_c < 0 || x_c >= src_size.x; | |||
| if (!outside_x && !outside_y) { | |||
| FLT4 f = filter[fx_c]; | |||
| //FLT4 src_final =src_data[(((Z) * src_size.y + (y_c)) * src_size.x + (x_c))]; | |||
| FLT4 src_final =read_imagef(src_data, sampler_zero, (int2)(x_c, (Z * src_size.y + y_c))); | |||
| // FLT4 src_final =src_data[(((Z) * src_size.y + (y_c)) * src_size.x + (x_c))]; | |||
| FLT4 src_final = read_imagef(src_data, sampler_zero, (int2)(x_c, (Z * src_size.y + y_c))); | |||
| r += TO_FLT4(src_final * f); | |||
| }; | |||
| } | |||
| fx_c++; | |||
| } | |||
| } | |||
| FLT4 bias_val = bias[Z]; | |||
| FLT4 res0 = TO_FLT4(r) + bias_val; | |||
| res0 = clamp(res0, (FLT)(0.0f), (FLT)(relu_clip1)); | |||
| //dst_data[(((Z) * dst_size.y + (Y)) * dst_size.x + (X))] = res0; | |||
| // dst_data[(((Z) * dst_size.y + (Y)) * dst_size.x + (X))] = res0; | |||
| write_imagef(dst_data, (int2)(X, (Z * dst_size.y + Y)), res0); | |||
| } | |||
| __kernel void DepthwiseConv2d_IMG_NHWC4( | |||
| __read_only image2d_t src_data, | |||
| __global FLT4* filter, | |||
| __global FLT4* bias, | |||
| float relu_clip1, | |||
| __write_only image2d_t dst_data, | |||
| int2 kernel_size, | |||
| int2 stride, | |||
| int2 padding, | |||
| int2 dilation, | |||
| int4 src_size, | |||
| int4 dst_size) { | |||
| __kernel void DepthwiseConv2d_IMG_NHWC4(__read_only image2d_t src_data, __global FLT4 *filter, __global FLT4 *bias, | |||
| float relu_clip1, __write_only image2d_t dst_data, int2 kernel_size, | |||
| int2 stride, int2 padding, int2 dilation, int4 src_size, int4 dst_size) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| @@ -78,32 +60,23 @@ __write_only image2d_t dst_data, | |||
| bool outside_x = x_c < 0 || x_c >= src_size.x; | |||
| if (!outside_x && !outside_y) { | |||
| FLT4 f = filter[fx_c]; | |||
| //FLT4 src_final =src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| FLT4 src_final =read_imagef(src_data, sampler_zero, (int2)(Z+x_c*src_size.z, y_c)); | |||
| // FLT4 src_final =src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| FLT4 src_final = read_imagef(src_data, sampler_zero, (int2)(Z + x_c * src_size.z, y_c)); | |||
| r += TO_FLT4(src_final * f); | |||
| }; | |||
| } | |||
| fx_c++; | |||
| } | |||
| } | |||
| FLT4 bias_val = bias[Z]; | |||
| FLT4 res0 = TO_FLT4(r) + bias_val; | |||
| res0 = clamp(res0, (FLT)(0.0f), (FLT)(relu_clip1)); | |||
| //dst_data[((Y * dst_size.x + X) * dst_size.z + Z)] = res0; | |||
| write_imagef(dst_data, (int2)(X*dst_size.z+Z, Y), res0); | |||
| // dst_data[((Y * dst_size.x + X) * dst_size.z + Z)] = res0; | |||
| write_imagef(dst_data, (int2)(X * dst_size.z + Z, Y), res0); | |||
| } | |||
| __kernel void DepthwiseConv2d_IMG_NHWC4_1x1( | |||
| __read_only image2d_t src_data, | |||
| __global FLT4* filter, | |||
| __global FLT4* bias, | |||
| float relu_clip1, | |||
| __write_only image2d_t dst_data, | |||
| int2 kernel_size, | |||
| int2 stride, | |||
| int2 padding, | |||
| int2 dilation, | |||
| int4 src_size, | |||
| int4 dst_size) { | |||
| __kernel void DepthwiseConv2d_IMG_NHWC4_1x1(__read_only image2d_t src_data, __global FLT4 *filter, __global FLT4 *bias, | |||
| float relu_clip1, __write_only image2d_t dst_data, int2 kernel_size, | |||
| int2 stride, int2 padding, int2 dilation, int4 src_size, int4 dst_size) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| @@ -120,30 +93,21 @@ __write_only image2d_t dst_data, | |||
| bool outside_x = x_c < 0 || x_c >= src_size.x; | |||
| if (!outside_x && !outside_y) { | |||
| FLT4 f = filter[fx_c]; | |||
| //FLT4 src_final =src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| // FLT4 src_final =src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| FLT4 src_final = read_imagef(src_data, sampler_zero, (int2)(Z, (y_c * src_size.x + x_c) * src_size.z)); | |||
| r += TO_FLT4(src_final * f); | |||
| }; | |||
| } | |||
| } | |||
| } | |||
| FLT4 bias_val = bias[Z]; | |||
| FLT4 res0 = TO_FLT4(r) + bias_val; | |||
| res0 = clamp(res0, (FLT)(0.0f), (FLT)(relu_clip1)); | |||
| //dst_data[((Y * dst_size.x + X) * dst_size.z + Z)] = res0; | |||
| // dst_data[((Y * dst_size.x + X) * dst_size.z + Z)] = res0; | |||
| write_imagef(dst_data, (int2)(Z, (Y * dst_size.x + X) * dst_size.z), res0); | |||
| } | |||
| __kernel void DepthwiseConv2d_BUF_NC4HW4( | |||
| __global FLT4* src_data, | |||
| __global FLT4* filter, | |||
| __global FLT4* bias, | |||
| float relu_clip1, | |||
| __global FLT4* dst_data, | |||
| int2 kernel_size, | |||
| int2 stride, | |||
| int2 padding, | |||
| int2 dilation, | |||
| int4 src_size, | |||
| int4 dst_size) { | |||
| __kernel void DepthwiseConv2d_BUF_NC4HW4(__global FLT4 *src_data, __global FLT4 *filter, __global FLT4 *bias, | |||
| float relu_clip1, __global FLT4 *dst_data, int2 kernel_size, int2 stride, | |||
| int2 padding, int2 dilation, int4 src_size, int4 dst_size) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| @@ -160,30 +124,21 @@ __global FLT4* dst_data, | |||
| bool outside_x = x_c < 0 || x_c >= src_size.x; | |||
| if (!outside_x && !outside_y) { | |||
| FLT4 f = filter[fx_c]; | |||
| FLT4 src_final =src_data[(((Z) * src_size.y + (y_c)) * src_size.x + (x_c))]; | |||
| FLT4 src_final = src_data[(((Z)*src_size.y + (y_c)) * src_size.x + (x_c))]; | |||
| r += TO_FLT4(src_final * f); | |||
| }; | |||
| } | |||
| fx_c++; | |||
| } | |||
| } | |||
| FLT4 bias_val = bias[Z]; | |||
| FLT4 res0 = TO_FLT4(r) + bias_val; | |||
| res0 = clamp(res0, (FLT)(0.0f), (FLT)(relu_clip1)); | |||
| dst_data[(((Z) * dst_size.y + (Y)) * dst_size.x + (X))] = res0; | |||
| dst_data[(((Z)*dst_size.y + (Y)) * dst_size.x + (X))] = res0; | |||
| } | |||
| __kernel void DepthwiseConv2d_BUF_NHWC4( | |||
| __global FLT4* src_data, | |||
| __global FLT4* filter, | |||
| __global FLT4* bias, | |||
| float relu_clip1, | |||
| __global FLT4* dst_data, | |||
| int2 kernel_size, | |||
| int2 stride, | |||
| int2 padding, | |||
| int2 dilation, | |||
| int4 src_size, | |||
| int4 dst_size) { | |||
| __kernel void DepthwiseConv2d_BUF_NHWC4(__global FLT4 *src_data, __global FLT4 *filter, __global FLT4 *bias, | |||
| float relu_clip1, __global FLT4 *dst_data, int2 kernel_size, int2 stride, | |||
| int2 padding, int2 dilation, int4 src_size, int4 dst_size) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| @@ -200,9 +155,9 @@ __global FLT4* dst_data, | |||
| bool outside_x = x_c < 0 || x_c >= src_size.x; | |||
| if (!outside_x && !outside_y) { | |||
| FLT4 f = filter[fx_c]; | |||
| FLT4 src_final =src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| FLT4 src_final = src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| r += TO_FLT4(src_final * f); | |||
| }; | |||
| } | |||
| fx_c++; | |||
| } | |||
| } | |||
| @@ -212,18 +167,9 @@ __global FLT4* dst_data, | |||
| dst_data[((Y * dst_size.x + X) * dst_size.z + Z)] = res0; | |||
| } | |||
| __kernel void DepthwiseConv2d_BUF_NHWC4_1x1( | |||
| __global FLT4* src_data, | |||
| __global FLT4* filter, | |||
| __global FLT4* bias, | |||
| float relu_clip1, | |||
| __global FLT4* dst_data, | |||
| int2 kernel_size, | |||
| int2 stride, | |||
| int2 padding, | |||
| int2 dilation, | |||
| int4 src_size, | |||
| int4 dst_size) { | |||
| __kernel void DepthwiseConv2d_BUF_NHWC4_1x1(__global FLT4 *src_data, __global FLT4 *filter, __global FLT4 *bias, | |||
| float relu_clip1, __global FLT4 *dst_data, int2 kernel_size, int2 stride, | |||
| int2 padding, int2 dilation, int4 src_size, int4 dst_size) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| @@ -240,13 +186,13 @@ __global FLT4* dst_data, | |||
| bool outside_x = x_c < 0 || x_c >= src_size.x; | |||
| if (!outside_x && !outside_y) { | |||
| FLT4 f = filter[fx_c]; | |||
| FLT4 src_final =src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| FLT4 src_final = src_data[((y_c * src_size.x + x_c) * src_size.z + Z)]; | |||
| r += TO_FLT4(src_final * f); | |||
| }; | |||
| } | |||
| } | |||
| } | |||
| FLT4 bias_val = bias[Z]; | |||
| FLT4 res0 = TO_FLT4(r) + bias_val; | |||
| res0 = clamp(res0, (FLT)(0.0f), (FLT)(relu_clip1)); | |||
| dst_data[((Y * dst_size.x + X) * dst_size.z + Z)] = res0; | |||
| } | |||
| } | |||
| @@ -1,8 +1,7 @@ | |||
| #define FLT4 float4 | |||
| #define FLT16 float16 | |||
| __kernel void MatMul(__global FLT4 *x, __global FLT16 *weight, | |||
| __global FLT4 *buffer, __global FLT4 *bias, int2 offset_ci, | |||
| int2 offset_co, int has_bias) { | |||
| __kernel void MatMul(__global FLT4 *x, __global FLT16 *weight, __global FLT4 *buffer, __global FLT4 *bias, | |||
| int2 offset_ci, int2 offset_co, int has_bias) { | |||
| int2 gid = (int2)(get_global_id(0), get_global_id(1)); | |||
| int2 lid = (int2)(get_local_id(0), get_local_id(1)); | |||
| FLT4 s = (FLT4)(0.0f); | |||
| @@ -28,4 +27,4 @@ __kernel void MatMul(__global FLT4 *x, __global FLT16 *weight, | |||
| buffer[gid.x] = s; | |||
| // memory pollution? or protected by opencl | |||
| } | |||
| } | |||
| } | |||
| @@ -1,16 +1,13 @@ | |||
| #define SLICES 4 | |||
| int DivideRoundUp(int n, int div) | |||
| { | |||
| int q = n / div; | |||
| return n % div == 0 ? q : q + 1; | |||
| int DivideRoundUp(int n, int div) { | |||
| int q = n / div; | |||
| return n % div == 0 ? q : q + 1; | |||
| } | |||
| __kernel void SoftMax(__global float4 *input, | |||
| __global float4 *output, | |||
| const int4 input_shape) { | |||
| int X = get_global_id(0); // width | |||
| int Y = get_global_id(1); // height | |||
| __kernel void SoftMax(__global float4 *input, __global float4 *output, const int4 input_shape) { | |||
| int X = get_global_id(0); // width | |||
| int Y = get_global_id(1); // height | |||
| int H = input_shape.y; | |||
| int W = input_shape.z; | |||
| int C = input_shape.w; | |||
| @@ -32,4 +29,4 @@ __kernel void SoftMax(__global float4 *input, | |||
| float4 result = convert_float4(t); | |||
| output[(Y * W + X * H) * C + d] = result; | |||
| } | |||
| } | |||
| } | |||