|
|
|
@@ -19,8 +19,8 @@ |
|
|
|
- [Evaluation Result](#evaluation-result) |
|
|
|
- [Model Description](#model-description) |
|
|
|
- [Performance](#performance) |
|
|
|
- [Training Performance](#training-performance) |
|
|
|
- [Evaluation Performance](#evaluation-performance) |
|
|
|
- [Inference Performance](#inference-performance) |
|
|
|
- [Description of Random Situation](#description-of-random-situation) |
|
|
|
- [ModelZoo Homepage](#modelzoo-homepage) |
|
|
|
|
|
|
|
@@ -280,7 +280,7 @@ Usage: sh run_standalone_train.sh [PRETRAINED_MODEL] |
|
|
|
"save_checkpoint": True, # whether save checkpoint or not |
|
|
|
"save_checkpoint_epochs": 1, # save checkpoint interval |
|
|
|
"keep_checkpoint_max": 12, # max number of saved checkpoint |
|
|
|
"save_checkpoint_path": "./checkpoint", # path of checkpoint |
|
|
|
"save_checkpoint_path": "./", # path of checkpoint |
|
|
|
|
|
|
|
"mindrecord_dir": "/home/maskrcnn/MindRecord_COCO2017_Train", # path of mindrecord |
|
|
|
"coco_root": "/home/maskrcnn/", # path of coco root dateset |
|
|
|
@@ -336,13 +336,13 @@ Training result will be stored in the example path, whose folder name begins wit |
|
|
|
|
|
|
|
``` |
|
|
|
# distribute training result(8p) |
|
|
|
epoch: 1 step: 7393 ,rpn_loss: 0.10626, rcnn_loss: 0.81592, rpn_cls_loss: 0.05862, rpn_reg_loss: 0.04761, rcnn_cls_loss: 0.32642, rcnn_reg_loss: 0.15503, rcnn_mask_loss: 0.33447, total_loss: 0.92218 |
|
|
|
epoch: 2 step: 7393 ,rpn_loss: 0.00911, rcnn_loss: 0.34082, rpn_cls_loss: 0.00341, rpn_reg_loss: 0.00571, rcnn_cls_loss: 0.07440, rcnn_reg_loss: 0.05872, rcnn_mask_loss: 0.20764, total_loss: 0.34993 |
|
|
|
epoch: 3 step: 7393 ,rpn_loss: 0.02087, rcnn_loss: 0.98633, rpn_cls_loss: 0.00665, rpn_reg_loss: 0.01422, rcnn_cls_loss: 0.35913, rcnn_reg_loss: 0.21375, rcnn_mask_loss: 0.41382, total_loss: 1.00720 |
|
|
|
epoch: 1 step: 7393 ,rpn_loss: 0.05716, rcnn_loss: 0.81152, rpn_cls_loss: 0.04828, rpn_reg_loss: 0.00889, rcnn_cls_loss: 0.28784, rcnn_reg_loss: 0.17590, rcnn_mask_loss: 0.34790, total_loss: 0.86868 |
|
|
|
epoch: 2 step: 7393 ,rpn_loss: 0.00434, rcnn_loss: 0.36572, rpn_cls_loss: 0.00339, rpn_reg_loss: 0.00095, rcnn_cls_loss: 0.08240, rcnn_reg_loss: 0.05554, rcnn_mask_loss: 0.22778, total_loss: 0.37006 |
|
|
|
epoch: 3 step: 7393 ,rpn_loss: 0.00996, rcnn_loss: 0.83789, rpn_cls_loss: 0.00701, rpn_reg_loss: 0.00294, rcnn_cls_loss: 0.39478, rcnn_reg_loss: 0.14917, rcnn_mask_loss: 0.29370, total_loss: 0.84785 |
|
|
|
... |
|
|
|
epoch: 10 step: 7393 ,rpn_loss: 0.02122, rcnn_loss: 0.55176, rpn_cls_loss: 0.00620, rpn_reg_loss: 0.01503, rcnn_cls_loss: 0.12708, rcnn_reg_loss: 0.10254, rcnn_mask_loss: 0.32227, total_loss: 0.57298 |
|
|
|
epoch: 11 step: 7393 ,rpn_loss: 0.03772, rcnn_loss: 0.60791, rpn_cls_loss: 0.03058, rpn_reg_loss: 0.00713, rcnn_cls_loss: 0.23987, rcnn_reg_loss: 0.11743, rcnn_mask_loss: 0.25049, total_loss: 0.64563 |
|
|
|
epoch: 12 step: 7393 ,rpn_loss: 0.06482, rcnn_loss: 0.47681, rpn_cls_loss: 0.04770, rpn_reg_loss: 0.01709, rcnn_cls_loss: 0.16492, rcnn_reg_loss: 0.04990, rcnn_mask_loss: 0.26196, total_loss: 0.54163 |
|
|
|
epoch: 10 step: 7393 ,rpn_loss: 0.00667, rcnn_loss: 0.65625, rpn_cls_loss: 0.00536, rpn_reg_loss: 0.00131, rcnn_cls_loss: 0.17590, rcnn_reg_loss: 0.16199, rcnn_mask_loss: 0.31812, total_loss: 0.66292 |
|
|
|
epoch: 11 step: 7393 ,rpn_loss: 0.02003, rcnn_loss: 0.52051, rpn_cls_loss: 0.01761, rpn_reg_loss: 0.00241, rcnn_cls_loss: 0.16028, rcnn_reg_loss: 0.08411, rcnn_mask_loss: 0.27588, total_loss: 0.54054 |
|
|
|
epoch: 12 step: 7393 ,rpn_loss: 0.00547, rcnn_loss: 0.39258, rpn_cls_loss: 0.00285, rpn_reg_loss: 0.00262, rcnn_cls_loss: 0.08002, rcnn_reg_loss: 0.04990, rcnn_mask_loss: 0.26245, total_loss: 0.39804 |
|
|
|
``` |
|
|
|
|
|
|
|
## [Evaluation Process](#contents) |
|
|
|
@@ -364,39 +364,39 @@ Inference result will be stored in the example path, whose folder name is "eval" |
|
|
|
``` |
|
|
|
Evaluate annotation type *bbox* |
|
|
|
Accumulating evaluation results... |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.376 |
|
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.598 |
|
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.405 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.239 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.414 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.475 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.378 |
|
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.602 |
|
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.407 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.242 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.417 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.311 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.500 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.528 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.371 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.572 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.653 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.497 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.524 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.363 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.567 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.647 |
|
|
|
|
|
|
|
Evaluate annotation type *segm* |
|
|
|
Accumulating evaluation results... |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.326 |
|
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.553 |
|
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.344 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.335 |
|
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.557 |
|
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.351 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.169 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.356 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.462 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.278 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.426 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.445 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.294 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.484 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.558 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.365 |
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.284 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.433 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.451 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.285 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.490 |
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586 |
|
|
|
``` |
|
|
|
|
|
|
|
# Model Description |
|
|
|
## Performance |
|
|
|
|
|
|
|
### Training Performance |
|
|
|
### Evaluation Performance |
|
|
|
|
|
|
|
| Parameters | MaskRCNN | |
|
|
|
| -------------------------- | ----------------------------------------------------------- | |
|
|
|
@@ -407,14 +407,18 @@ Accumulating evaluation results... |
|
|
|
| Dataset | COCO2017 | |
|
|
|
| Training Parameters | epoch=12, batch_size = 2 | |
|
|
|
| Optimizer | SGD | |
|
|
|
| Loss Function | Softmax Cross Entropy ,Sigmoid Cross Entropy,SmoothL1Loss | |
|
|
|
| Speed | 1pc: 250 ms/step; 8pcs: 260 ms/step | |
|
|
|
| Total time | 1pc: 52 hours; 8pcs: 6.6 hours | |
|
|
|
| Parameters (M) | 280 | |
|
|
|
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/maskrcnn | |
|
|
|
| Loss Function | Softmax Cross Entropy, Sigmoid Cross Entropy, SmoothL1Loss | |
|
|
|
| Output | Probability | |
|
|
|
| Loss | 0.39804 | |
|
|
|
| Speed | 1pc: 193 ms/step; 8pcs: 207 ms/step | |
|
|
|
| Total time | 1pc: 46 hours; 8pcs: 5.38 hours | |
|
|
|
| Parameters (M) | 84.8 | |
|
|
|
| Checkpoint for Fine tuning | 85M(.ckpt file) | |
|
|
|
| Model for inference | 571M(.air file) | |
|
|
|
| Scripts | [maskrcnn script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/maskrcnn) | |
|
|
|
|
|
|
|
|
|
|
|
### Evaluation Performance |
|
|
|
### Inference Performance |
|
|
|
|
|
|
|
| Parameters | MaskRCNN | |
|
|
|
| ------------------- | --------------------------- | |
|
|
|
@@ -425,12 +429,12 @@ Accumulating evaluation results... |
|
|
|
| Dataset | COCO2017 | |
|
|
|
| batch_size | 2 | |
|
|
|
| outputs | mAP | |
|
|
|
| Accuracy | IoU=0.50:0.95 32.4% | |
|
|
|
| Model for inference | 254M (.ckpt file) | |
|
|
|
| Accuracy | IoU=0.50:0.95 (BoundingBox 37.0%, Mask 33.5) | |
|
|
|
| Model for inference | 170M (.ckpt file) | |
|
|
|
|
|
|
|
|
|
|
|
# [Description of Random Situation](#contents) |
|
|
|
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py for weight initialization. |
|
|
|
|
|
|
|
# [ModelZoo Homepage](#contents) |
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). |
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). |