Browse Source

!8890 Add labels to python files

From: @JunYuLiu
Reviewed-by: @gemini524
Signed-off-by:
tags/v1.1.0
mindspore-ci-bot Gitee 5 years ago
parent
commit
d79a454564
28 changed files with 285 additions and 0 deletions
  1. +3
    -0
      mindspore/nn/cell.py
  2. +36
    -0
      mindspore/nn/layer/activation.py
  3. +39
    -0
      mindspore/nn/layer/basic.py
  4. +6
    -0
      mindspore/nn/layer/combined.py
  5. +6
    -0
      mindspore/nn/layer/container.py
  6. +12
    -0
      mindspore/nn/layer/conv.py
  7. +6
    -0
      mindspore/nn/layer/embedding.py
  8. +15
    -0
      mindspore/nn/layer/image.py
  9. +6
    -0
      mindspore/nn/layer/lstm.py
  10. +18
    -0
      mindspore/nn/layer/math.py
  11. +15
    -0
      mindspore/nn/layer/normalization.py
  12. +12
    -0
      mindspore/nn/layer/pooling.py
  13. +21
    -0
      mindspore/nn/layer/quant.py
  14. +18
    -0
      mindspore/nn/loss/loss.py
  15. +9
    -0
      mindspore/nn/optim/adam.py
  16. +3
    -0
      mindspore/nn/optim/ftrl.py
  17. +3
    -0
      mindspore/nn/optim/lamb.py
  18. +3
    -0
      mindspore/nn/optim/lars.py
  19. +3
    -0
      mindspore/nn/optim/lazyadam.py
  20. +3
    -0
      mindspore/nn/optim/momentum.py
  21. +3
    -0
      mindspore/nn/optim/optimizer.py
  22. +3
    -0
      mindspore/nn/optim/proximal_ada_grad.py
  23. +3
    -0
      mindspore/nn/optim/rmsprop.py
  24. +3
    -0
      mindspore/nn/optim/sgd.py
  25. +18
    -0
      mindspore/nn/wrap/cell_wrapper.py
  26. +3
    -0
      mindspore/nn/wrap/grad_reducer.py
  27. +9
    -0
      mindspore/nn/wrap/loss_scale.py
  28. +6
    -0
      mindspore/ops/operations/array_ops.py

+ 3
- 0
mindspore/nn/cell.py View File

@@ -51,6 +51,9 @@ class Cell(Cell_):
Args: Args:
auto_prefix (bool): Recursively generate namespaces. Default: True. auto_prefix (bool): Recursively generate namespaces. Default: True.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> class MyCell(Cell): >>> class MyCell(Cell):
>>> def __init__(self): >>> def __init__(self):


+ 36
- 0
mindspore/nn/layer/activation.py View File

@@ -67,6 +67,9 @@ class Softmax(Cell):
Outputs: Outputs:
Tensor, which has the same type and shape as `x` with values in the range[0,1]. Tensor, which has the same type and shape as `x` with values in the range[0,1].


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> softmax = nn.Softmax() >>> softmax = nn.Softmax()
@@ -104,6 +107,9 @@ class LogSoftmax(Cell):
Outputs: Outputs:
Tensor, which has the same type and shape as the input as `x` with values in the range[-inf,0). Tensor, which has the same type and shape as the input as `x` with values in the range[-inf,0).


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> log_softmax = nn.LogSoftmax() >>> log_softmax = nn.LogSoftmax()
@@ -174,6 +180,9 @@ class ReLU(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_data`. Tensor, with the same type and shape as the `input_data`.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> input_x = Tensor(np.array([-1, 2, -3, 2, -1]), mindspore.float16) >>> input_x = Tensor(np.array([-1, 2, -3, 2, -1]), mindspore.float16)
>>> relu = nn.ReLU() >>> relu = nn.ReLU()
@@ -204,6 +213,9 @@ class ReLU6(Cell):
Outputs: Outputs:
Tensor, which has the same type as `input_data`. Tensor, which has the same type as `input_data`.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> relu6 = nn.ReLU6() >>> relu6 = nn.ReLU6()
@@ -242,6 +254,9 @@ class LeakyReLU(Cell):
Outputs: Outputs:
Tensor, has the same type and shape as the `input_x`. Tensor, has the same type and shape as the `input_x`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> leaky_relu = nn.LeakyReLU() >>> leaky_relu = nn.LeakyReLU()
@@ -287,6 +302,9 @@ class Tanh(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_data`. Tensor, with the same type and shape as the `input_data`.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 2, 1]), mindspore.float16) >>> input_x = Tensor(np.array([1, 2, 3, 2, 1]), mindspore.float16)
>>> tanh = nn.Tanh() >>> tanh = nn.Tanh()
@@ -319,6 +337,9 @@ class GELU(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_data`. Tensor, with the same type and shape as the `input_data`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> gelu = nn.GELU() >>> gelu = nn.GELU()
@@ -351,6 +372,9 @@ class Sigmoid(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_data`. Tensor, with the same type and shape as the `input_data`.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> sigmoid = nn.Sigmoid() >>> sigmoid = nn.Sigmoid()
@@ -390,6 +414,9 @@ class PReLU(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_data`. Tensor, with the same type and shape as the `input_data`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> input_x = Tensor(np.array([[[[0.1, 0.6], [0.9, 0.9]]]]), mindspore.float32) >>> input_x = Tensor(np.array([[[[0.1, 0.6], [0.9, 0.9]]]]), mindspore.float32)
>>> prelu = nn.PReLU() >>> prelu = nn.PReLU()
@@ -444,6 +471,9 @@ class HSwish(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_data`. Tensor, with the same type and shape as the `input_data`.


Supported Platforms:
``GPU``

Examples: Examples:
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> hswish = nn.HSwish() >>> hswish = nn.HSwish()
@@ -479,6 +509,9 @@ class HSigmoid(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_data`. Tensor, with the same type and shape as the `input_data`.


Supported Platforms:
``GPU``

Examples: Examples:
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> hsigmoid = nn.HSigmoid() >>> hsigmoid = nn.HSigmoid()
@@ -514,6 +547,9 @@ class LogSigmoid(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_data`. Tensor, with the same type and shape as the `input_data`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.LogSigmoid() >>> net = nn.LogSigmoid()
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)


+ 39
- 0
mindspore/nn/layer/basic.py View File

@@ -72,6 +72,9 @@ class Dropout(Cell):
Outputs: Outputs:
Tensor, output tensor with the same shape as the input. Tensor, output tensor with the same shape as the input.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32) >>> x = Tensor(np.ones([2, 2, 3]), mindspore.float32)
>>> net = nn.Dropout(keep_prob=0.8) >>> net = nn.Dropout(keep_prob=0.8)
@@ -139,6 +142,9 @@ class Flatten(Cell):
Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is
the product of the remaining dimensions. the product of the remaining dimensions.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32) >>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
>>> net = nn.Flatten() >>> net = nn.Flatten()
@@ -195,6 +201,9 @@ class Dense(Cell):
Outputs: Outputs:
Tensor of shape :math:`(*, out\_channels)`. Tensor of shape :math:`(*, out\_channels)`.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32) >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> net = nn.Dense(3, 4) >>> net = nn.Dense(3, 4)
@@ -316,6 +325,9 @@ class ClipByNorm(Cell):
Outputs: Outputs:
Tensor, clipped tensor with the same shape as the input, whose type is float32. Tensor, clipped tensor with the same shape as the input, whose type is float32.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.ClipByNorm() >>> net = nn.ClipByNorm()
>>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32) >>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
@@ -387,6 +399,9 @@ class Norm(Cell):
Tensor, output tensor with dimensions in 'axis' reduced to 1 will be returned if 'keep_dims' is True; Tensor, output tensor with dimensions in 'axis' reduced to 1 will be returned if 'keep_dims' is True;
otherwise a Tensor with dimensions in 'axis' removed is returned. otherwise a Tensor with dimensions in 'axis' removed is returned.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.Norm(axis=0) >>> net = nn.Norm(axis=0)
>>> input = Tensor(np.random.randint(0, 10, [2, 4]), mindspore.float32) >>> input = Tensor(np.random.randint(0, 10, [2, 4]), mindspore.float32)
@@ -444,6 +459,9 @@ class OneHot(Cell):
Tensor, the one-hot tensor of data type 'dtype' with dimension at 'axis' expanded to 'depth' and filled with Tensor, the one-hot tensor of data type 'dtype' with dimension at 'axis' expanded to 'depth' and filled with
on_value and off_value. on_value and off_value.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> net = nn.OneHot(depth=4, axis=1) >>> net = nn.OneHot(depth=4, axis=1)
>>> indices = Tensor([[1, 3], [0, 2]], dtype=mindspore.int32) >>> indices = Tensor([[1, 3], [0, 2]], dtype=mindspore.int32)
@@ -501,6 +519,9 @@ class Pad(Cell):
is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is
[[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]]. [[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]].


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> from mindspore import Tensor >>> from mindspore import Tensor
>>> from mindspore.ops import operations as P >>> from mindspore.ops import operations as P
@@ -587,6 +608,9 @@ class Interpolate(Cell):
If scale is set, the result is 4-D tensor with shape:math:'(batch, channels, scale_factor * height, If scale is set, the result is 4-D tensor with shape:math:'(batch, channels, scale_factor * height,
scale_factor * width)' in float32 scale_factor * width)' in float32


Supported Platforms:
``Ascend``

Examples: Examples:
>>> from mindspore.ops import operations as P >>> from mindspore.ops import operations as P
>>> tensor = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mindspore.float32) >>> tensor = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mindspore.float32)
@@ -630,6 +654,9 @@ class Unfold(Cell):
Tensor, a 4-D tensor whose data type is same as 'input_x', Tensor, a 4-D tensor whose data type is same as 'input_x',
and the shape is [out_batch, out_depth, out_row, out_col], the out_batch is the same as the in_batch. and the shape is [out_batch, out_depth, out_row, out_col], the out_batch is the same as the in_batch.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> net = Unfold(ksizes=[1, 2, 2, 1], strides=[1, 2, 2, 1], rates=[1, 2, 2, 1]) >>> net = Unfold(ksizes=[1, 2, 2, 1], strides=[1, 2, 2, 1], rates=[1, 2, 2, 1])
>>> image = Tensor(np.ones([2, 3, 6, 6]), dtype=mstype.float16) >>> image = Tensor(np.ones([2, 3, 6, 6]), dtype=mstype.float16)
@@ -675,6 +702,9 @@ class Tril(Cell):
Outputs: Outputs:
Tensor, has the same type as input `x`. Tensor, has the same type as input `x`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> x = Tensor(np.array([[1, 2], [3, 4]])) >>> x = Tensor(np.array([[1, 2], [3, 4]]))
>>> tril = nn.Tril() >>> tril = nn.Tril()
@@ -757,6 +787,9 @@ class MatrixDiag(Cell):
Outputs: Outputs:
Tensor, has the same type as input `x`. The shape must be x.shape + (x.shape[-1], ). Tensor, has the same type as input `x`. The shape must be x.shape + (x.shape[-1], ).


Supported Platforms:
``Ascend``

Examples: Examples:
>>> x = Tensor(np.array([1, -1]), mstype.float32) >>> x = Tensor(np.array([1, -1]), mstype.float32)
>>> matrix_diag = nn.MatrixDiag() >>> matrix_diag = nn.MatrixDiag()
@@ -789,6 +822,9 @@ class MatrixDiagPart(Cell):
Outputs: Outputs:
Tensor, has the same type as input `x`. The shape must be x.shape[:-2] + [min(x.shape[-2:])]. Tensor, has the same type as input `x`. The shape must be x.shape[:-2] + [min(x.shape[-2:])].


Supported Platforms:
``Ascend``

Examples: Examples:
>>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
>>> matrix_diag_part = nn.MatrixDiagPart() >>> matrix_diag_part = nn.MatrixDiagPart()
@@ -823,6 +859,9 @@ class MatrixSetDiag(Cell):
Outputs: Outputs:
Tensor, has the same type and shape as input `x`. Tensor, has the same type and shape as input `x`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32) >>> x = Tensor([[[-1, 0], [0, 1]], [[-1, 0], [0, 1]], [[-1, 0], [0, 1]]], mindspore.float32)
>>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32) >>> diagonal = Tensor([[-1., 2.], [-1., 1.], [-1., 1.]], mindspore.float32)


+ 6
- 0
mindspore/nn/layer/combined.py View File

@@ -76,6 +76,9 @@ class Conv2dBnAct(Cell):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.Conv2dBnAct(120, 240, 4, has_bn=True, activation='relu') >>> net = nn.Conv2dBnAct(120, 240, 4, has_bn=True, activation='relu')
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32) >>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
@@ -168,6 +171,9 @@ class DenseBnAct(Cell):
Outputs: Outputs:
Tensor of shape :math:`(N, out\_channels)`. Tensor of shape :math:`(N, out\_channels)`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> net = nn.DenseBnAct(3, 4) >>> net = nn.DenseBnAct(3, 4)
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32) >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)


+ 6
- 0
mindspore/nn/layer/container.py View File

@@ -80,6 +80,9 @@ class SequentialCell(Cell):
Outputs: Outputs:
Tensor, the output Tensor with shape depending on the input and defined sequence of Cells. Tensor, the output Tensor with shape depending on the input and defined sequence of Cells.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> conv = nn.Conv2d(3, 2, 3, pad_mode='valid') >>> conv = nn.Conv2d(3, 2, 3, pad_mode='valid')
>>> bn = nn.BatchNorm2d(2) >>> bn = nn.BatchNorm2d(2)
@@ -184,6 +187,9 @@ class CellList(_CellListBase, Cell):
Args: Args:
args (list, optional): List of subclass of Cell. args (list, optional): List of subclass of Cell.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> conv = nn.Conv2d(100, 20, 3) >>> conv = nn.Conv2d(100, 20, 3)
>>> bn = nn.BatchNorm2d(20) >>> bn = nn.BatchNorm2d(20)


+ 12
- 0
mindspore/nn/layer/conv.py View File

@@ -196,6 +196,9 @@ class Conv2d(_Conv):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})` or `(N, H_{out}, W_{out}, C_{out})`. Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})` or `(N, H_{out}, W_{out}, C_{out})`.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal') >>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal')
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32) >>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
@@ -372,6 +375,9 @@ class Conv1d(_Conv):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.Conv1d(120, 240, 4, has_bias=False, weight_init='normal') >>> net = nn.Conv1d(120, 240, 4, has_bias=False, weight_init='normal')
>>> input = Tensor(np.ones([1, 120, 640]), mindspore.float32) >>> input = Tensor(np.ones([1, 120, 640]), mindspore.float32)
@@ -543,6 +549,9 @@ class Conv2dTranspose(_Conv):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad') >>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad')
>>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32) >>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32)
@@ -719,6 +728,9 @@ class Conv1dTranspose(_Conv):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad') >>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad')
>>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32) >>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32)


+ 6
- 0
mindspore/nn/layer/embedding.py View File

@@ -60,6 +60,9 @@ class Embedding(Cell):
Outputs: Outputs:
Tensor of shape :math:`(\text{batch_size}, \text{input_length}, \text{embedding_size})`. Tensor of shape :math:`(\text{batch_size}, \text{input_length}, \text{embedding_size})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.Embedding(20000, 768, True) >>> net = nn.Embedding(20000, 768, True)
>>> input_data = Tensor(np.ones([8, 128]), mindspore.int32) >>> input_data = Tensor(np.ones([8, 128]), mindspore.int32)
@@ -160,6 +163,9 @@ class EmbeddingLookup(Cell):
Outputs: Outputs:
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`. Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32) >>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32)
>>> result = nn.EmbeddingLookup(4,2)(input_indices) >>> result = nn.EmbeddingLookup(4,2)(input_indices)


+ 15
- 0
mindspore/nn/layer/image.py View File

@@ -50,6 +50,9 @@ class ImageGradients(Cell):
- **dy** (Tensor) - vertical image gradients, the same type and shape as input. - **dy** (Tensor) - vertical image gradients, the same type and shape as input.
- **dx** (Tensor) - horizontal image gradients, the same type and shape as input. - **dx** (Tensor) - horizontal image gradients, the same type and shape as input.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.ImageGradients() >>> net = nn.ImageGradients()
>>> image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mindspore.int32) >>> image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mindspore.int32)
@@ -211,6 +214,9 @@ class SSIM(Cell):
Outputs: Outputs:
Tensor, has the same dtype as img1. It is a 1-D tensor with shape N, where N is the batch num of img1. Tensor, has the same dtype as img1. It is a 1-D tensor with shape N, where N is the batch num of img1.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.SSIM() >>> net = nn.SSIM()
>>> img1 = Tensor(np.random.random((1,3,16,16)), mindspore.float32) >>> img1 = Tensor(np.random.random((1,3,16,16)), mindspore.float32)
@@ -289,6 +295,9 @@ class MSSSIM(Cell):
Outputs: Outputs:
Tensor, the value is in range [0, 1]. It is a 1-D tensor with shape N, where N is the batch num of img1. Tensor, the value is in range [0, 1]. It is a 1-D tensor with shape N, where N is the batch num of img1.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> net = nn.MSSSIM(power_factors=(0.033, 0.033, 0.033)) >>> net = nn.MSSSIM(power_factors=(0.033, 0.033, 0.033))
>>> np.random.seed(0) >>> np.random.seed(0)
@@ -380,6 +389,9 @@ class PSNR(Cell):
Outputs: Outputs:
Tensor, with dtype mindspore.float32. It is a 1-D tensor with shape N, where N is the batch num of img1. Tensor, with dtype mindspore.float32. It is a 1-D tensor with shape N, where N is the batch num of img1.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = nn.PSNR() >>> net = nn.PSNR()
>>> img1 = Tensor(np.random.random((1,3,16,16))) >>> img1 = Tensor(np.random.random((1,3,16,16)))
@@ -450,6 +462,9 @@ class CentralCrop(Cell):
Outputs: Outputs:
Tensor, 3-D or 4-D float tensor, according to the input. Tensor, 3-D or 4-D float tensor, according to the input.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> net = nn.CentralCrop(central_fraction=0.5) >>> net = nn.CentralCrop(central_fraction=0.5)
>>> image = Tensor(np.random.random((4, 3, 4, 4)), mindspore.float32) >>> image = Tensor(np.random.random((4, 3, 4, 4)), mindspore.float32)


+ 6
- 0
mindspore/nn/layer/lstm.py View File

@@ -95,6 +95,9 @@ class LSTM(Cell):
- **hx_n** (tuple) - A tuple of two Tensor (h_n, c_n) both of shape - **hx_n** (tuple) - A tuple of two Tensor (h_n, c_n) both of shape
(num_directions * `num_layers`, batch_size, `hidden_size`). (num_directions * `num_layers`, batch_size, `hidden_size`).


Supported Platforms:
``GPU``

Examples: Examples:
>>> net = nn.LSTM(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False) >>> net = nn.LSTM(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False)
>>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32)) >>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32))
@@ -303,6 +306,9 @@ class LSTMCell(Cell):
- **reserve** - reserved - **reserve** - reserved
- **state** - reserved - **state** - reserved


Supported Platforms:
``GPU`` ``CPU``

Examples: Examples:
>>> net = nn.LSTMCell(10, 12, has_bias=True, batch_first=True, bidirectional=False) >>> net = nn.LSTMCell(10, 12, has_bias=True, batch_first=True, bidirectional=False)
>>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32)) >>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32))


+ 18
- 0
mindspore/nn/layer/math.py View File

@@ -60,6 +60,9 @@ class ReduceLogSumExp(Cell):
- If axis is tuple(int), set as (2, 3), and keep_dims is False, - If axis is tuple(int), set as (2, 3), and keep_dims is False,
the shape of output is :math:`(x_1, x_4, ..., x_R)`. the shape of output is :math:`(x_1, x_4, ..., x_R)`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
>>> op = nn.ReduceLogSumExp(1, keep_dims=True) >>> op = nn.ReduceLogSumExp(1, keep_dims=True)
@@ -98,6 +101,9 @@ class Range(Cell):
Outputs: Outputs:
Tensor, the dtype is int if the dtype of `start`, `limit` and `delta` all are int. Otherwise, dtype is float. Tensor, the dtype is int if the dtype of `start`, `limit` and `delta` all are int. Otherwise, dtype is float.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> net = nn.Range(1, 8, 2) >>> net = nn.Range(1, 8, 2)
>>> output = net() >>> output = net()
@@ -152,6 +158,9 @@ class LinSpace(Cell):
Outputs: Outputs:
Tensor, With type same as `start`. The shape is 1-D with length of `num`. Tensor, With type same as `start`. The shape is 1-D with length of `num`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> linspace = nn.LinSpace(1, 10, 5) >>> linspace = nn.LinSpace(1, 10, 5)
>>> output = linspace() >>> output = linspace()
@@ -225,6 +234,9 @@ class LGamma(Cell):
Outputs: Outputs:
Tensor, has the same shape and dtype as the `input_x`. Tensor, has the same shape and dtype as the `input_x`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> input_x = Tensor(np.array([2, 3, 4]).astype(np.float32)) >>> input_x = Tensor(np.array([2, 3, 4]).astype(np.float32))
>>> op = nn.LGamma() >>> op = nn.LGamma()
@@ -758,6 +770,9 @@ class MatMul(Cell):
Outputs: Outputs:
Tensor, the shape of the output tensor depends on the dimension of input tensors. Tensor, the shape of the output tensor depends on the dimension of input tensors.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> net = nn.MatMul() >>> net = nn.MatMul()
>>> input_x1 = Tensor(np.ones(shape=[3, 2, 3]), mindspore.float32) >>> input_x1 = Tensor(np.ones(shape=[3, 2, 3]), mindspore.float32)
@@ -830,6 +845,9 @@ class Moments(Cell):
- **mean** (Tensor) - The mean of input x, with the same date type as input x. - **mean** (Tensor) - The mean of input x, with the same date type as input x.
- **variance** (Tensor) - The variance of input x, with the same date type as input x. - **variance** (Tensor) - The variance of input x, with the same date type as input x.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> net = nn.Moments(axis=3, keep_dims=True) >>> net = nn.Moments(axis=3, keep_dims=True)
>>> input_x = Tensor(np.array([[[[1, 2, 3, 4], [3, 4, 5, 6]]]]), mindspore.float32) >>> input_x = Tensor(np.array([[[[1, 2, 3, 4], [3, 4, 5, 6]]]]), mindspore.float32)


+ 15
- 0
mindspore/nn/layer/normalization.py View File

@@ -283,6 +283,9 @@ class BatchNorm1d(_BatchNorm):
Outputs: Outputs:
Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out})`. Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out})`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> net = nn.BatchNorm1d(num_features=4) >>> net = nn.BatchNorm1d(num_features=4)
>>> np.random.seed(0) >>> np.random.seed(0)
@@ -369,6 +372,9 @@ class BatchNorm2d(_BatchNorm):
Outputs: Outputs:
Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> net = nn.BatchNorm2d(num_features=3) >>> net = nn.BatchNorm2d(num_features=3)
>>> np.random.seed(0) >>> np.random.seed(0)
@@ -458,6 +464,9 @@ class GlobalBatchNorm(_BatchNorm):
Outputs: Outputs:
Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> # This example should be run with multiple processes. Refer to the run_distribute_train.sh >>> # This example should be run with multiple processes. Refer to the run_distribute_train.sh
>>> import os >>> import os
@@ -557,6 +566,9 @@ class LayerNorm(Cell):
Outputs: Outputs:
Tensor, the normalized and scaled offset tensor, has the same shape and data type as the `input_x`. Tensor, the normalized and scaled offset tensor, has the same shape and data type as the `input_x`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32) >>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
>>> shape1 = x.shape[1:] >>> shape1 = x.shape[1:]
@@ -630,6 +642,9 @@ class GroupNorm(Cell):
Outputs: Outputs:
Tensor, the normalized and scaled offset tensor, has the same shape and data type as the `input_x`. Tensor, the normalized and scaled offset tensor, has the same shape and data type as the `input_x`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> goup_norm_op = nn.GroupNorm(2, 2) >>> goup_norm_op = nn.GroupNorm(2, 2)
>>> x = Tensor(np.ones([1, 2, 4, 4], np.float32)) >>> x = Tensor(np.ones([1, 2, 4, 4], np.float32))


+ 12
- 0
mindspore/nn/layer/pooling.py View File

@@ -104,6 +104,9 @@ class MaxPool2d(_PoolNd):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> pool = nn.MaxPool2d(kernel_size=3, stride=1) >>> pool = nn.MaxPool2d(kernel_size=3, stride=1)
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32) >>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
@@ -171,6 +174,9 @@ class MaxPool1d(_PoolNd):
Outputs: Outputs:
Tensor of shape :math:`(N, C, L_{out}))`. Tensor of shape :math:`(N, C, L_{out}))`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> max_pool = nn.MaxPool1d(kernel_size=3, stride=1) >>> max_pool = nn.MaxPool1d(kernel_size=3, stride=1)
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4]), mindspore.float32) >>> x = Tensor(np.random.randint(0, 10, [1, 2, 4]), mindspore.float32)
@@ -257,6 +263,9 @@ class AvgPool2d(_PoolNd):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> pool = nn.AvgPool2d(kernel_size=3, stride=1) >>> pool = nn.AvgPool2d(kernel_size=3, stride=1)
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32) >>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
@@ -322,6 +331,9 @@ class AvgPool1d(_PoolNd):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, L_{out})`. Tensor of shape :math:`(N, C_{out}, L_{out})`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> pool = nn.AvgPool1d(kernel_size=6, stride=1) >>> pool = nn.AvgPool1d(kernel_size=6, stride=1)
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32) >>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)


+ 21
- 0
mindspore/nn/layer/quant.py View File

@@ -587,6 +587,9 @@ class Conv2dBnFoldQuant(Cell):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> qconfig = compression.quant.create_quant_config() >>> qconfig = compression.quant.create_quant_config()
>>> conv2d_bnfold = nn.Conv2dBnFoldQuant(1, 6, kernel_size=(2, 2), stride=(1, 1), pad_mode="valid", >>> conv2d_bnfold = nn.Conv2dBnFoldQuant(1, 6, kernel_size=(2, 2), stride=(1, 1), pad_mode="valid",
@@ -772,6 +775,9 @@ class Conv2dBnWithoutFoldQuant(Cell):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> qconfig = compression.quant.create_quant_config() >>> qconfig = compression.quant.create_quant_config()
>>> conv2d_no_bnfold = nn.Conv2dBnWithoutFoldQuant(1, 6, kernel_size=(2, 2), stride=(1, 1), pad_mode="valid", >>> conv2d_no_bnfold = nn.Conv2dBnWithoutFoldQuant(1, 6, kernel_size=(2, 2), stride=(1, 1), pad_mode="valid",
@@ -893,6 +899,9 @@ class Conv2dQuant(Cell):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> qconfig = compression.quant.create_quant_config() >>> qconfig = compression.quant.create_quant_config()
>>> conv2d_quant = nn.Conv2dQuant(1, 6, kernel_size= (2, 2), stride=(1, 1), pad_mode="valid", >>> conv2d_quant = nn.Conv2dQuant(1, 6, kernel_size= (2, 2), stride=(1, 1), pad_mode="valid",
@@ -994,6 +1003,9 @@ class DenseQuant(Cell):
Outputs: Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> qconfig = compression.quant.create_quant_config() >>> qconfig = compression.quant.create_quant_config()
>>> dense_quant = nn.DenseQuant(3, 6, quant_config=qconfig) >>> dense_quant = nn.DenseQuant(3, 6, quant_config=qconfig)
@@ -1100,6 +1112,9 @@ class ActQuant(_QuantActivation):
Outputs: Outputs:
Tensor, with the same type and shape as the `input`. Tensor, with the same type and shape as the `input`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> qconfig = compression.quant.create_quant_config() >>> qconfig = compression.quant.create_quant_config()
>>> act_quant = nn.ActQuant(nn.ReLU(), quant_config=qconfig) >>> act_quant = nn.ActQuant(nn.ReLU(), quant_config=qconfig)
@@ -1162,6 +1177,9 @@ class TensorAddQuant(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_x1`. Tensor, with the same type and shape as the `input_x1`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> qconfig = compression.quant.create_quant_config() >>> qconfig = compression.quant.create_quant_config()
>>> add_quant = nn.TensorAddQuant(quant_config=qconfig) >>> add_quant = nn.TensorAddQuant(quant_config=qconfig)
@@ -1210,6 +1228,9 @@ class MulQuant(Cell):
Outputs: Outputs:
Tensor, with the same type and shape as the `input_x1`. Tensor, with the same type and shape as the `input_x1`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> qconfig = compression.quant.create_quant_config() >>> qconfig = compression.quant.create_quant_config()
>>> mul_quant = nn.MulQuant(quant_config=qconfig) >>> mul_quant = nn.MulQuant(quant_config=qconfig)


+ 18
- 0
mindspore/nn/loss/loss.py View File

@@ -91,6 +91,9 @@ class L1Loss(_Loss):
Outputs: Outputs:
Tensor, loss float tensor. Tensor, loss float tensor.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> loss = nn.L1Loss() >>> loss = nn.L1Loss()
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
@@ -133,6 +136,9 @@ class MSELoss(_Loss):
Outputs: Outputs:
Tensor, weighted loss float tensor. Tensor, weighted loss float tensor.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> loss = nn.MSELoss() >>> loss = nn.MSELoss()
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
@@ -180,6 +186,9 @@ class SmoothL1Loss(_Loss):
Outputs: Outputs:
Tensor, loss float tensor. Tensor, loss float tensor.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> loss = nn.SmoothL1Loss() >>> loss = nn.SmoothL1Loss()
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
@@ -234,6 +243,9 @@ class SoftmaxCrossEntropyWithLogits(_Loss):
Tensor, a tensor of the same shape as logits with the component-wise Tensor, a tensor of the same shape as logits with the component-wise
logistic losses. logistic losses.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> logits = Tensor(np.random.randint(0, 9, [1, 10]), mindspore.float32) >>> logits = Tensor(np.random.randint(0, 9, [1, 10]), mindspore.float32)
@@ -511,6 +523,9 @@ class BCELoss(_Loss):
Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `inputs`. Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `inputs`.
Otherwise, the output is a scalar. Otherwise, the output is a scalar.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> weight = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 3.3, 2.2]]), mindspore.float32) >>> weight = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 3.3, 2.2]]), mindspore.float32)
>>> loss = nn.BCELoss(weight=weight, reduction='mean') >>> loss = nn.BCELoss(weight=weight, reduction='mean')
@@ -570,6 +585,9 @@ class CosineEmbeddingLoss(_Loss):
- **loss** (Tensor) - If `reduction` is "none", its shape is the same as `y`'s shape, otherwise a scalar value - **loss** (Tensor) - If `reduction` is "none", its shape is the same as `y`'s shape, otherwise a scalar value
will be returned. will be returned.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]), mindspore.float32) >>> x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]), mindspore.float32)
>>> x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]), mindspore.float32) >>> x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]), mindspore.float32)


+ 9
- 0
mindspore/nn/optim/adam.py View File

@@ -272,6 +272,9 @@ class Adam(Optimizer):
Outputs: Outputs:
Tensor[bool], the value is True. Tensor[bool], the value is True.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay
@@ -407,6 +410,9 @@ class AdamWeightDecay(Optimizer):
Outputs: Outputs:
tuple[bool], all elements are True. tuple[bool], all elements are True.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay
@@ -535,6 +541,9 @@ class AdamOffload(Optimizer):
Outputs: Outputs:
Tensor[bool], the value is True. Tensor[bool], the value is True.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay


+ 3
- 0
mindspore/nn/optim/ftrl.py View File

@@ -126,6 +126,9 @@ class FTRL(Optimizer):
Outputs: Outputs:
tuple[Parameter], the updated parameters, the shape is the same as `params`. tuple[Parameter], the updated parameters, the shape is the same as `params`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay


+ 3
- 0
mindspore/nn/optim/lamb.py View File

@@ -235,6 +235,9 @@ class Lamb(Optimizer):
Outputs: Outputs:
tuple[bool], all elements are True. tuple[bool], all elements are True.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay


+ 3
- 0
mindspore/nn/optim/lars.py View File

@@ -68,6 +68,9 @@ class LARS(Optimizer):
Outputs: Outputs:
Union[Tensor[bool], tuple[Parameter]], it depends on the output of `optimizer`. Union[Tensor[bool], tuple[Parameter]], it depends on the output of `optimizer`.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits() >>> loss = nn.SoftmaxCrossEntropyWithLogits()


+ 3
- 0
mindspore/nn/optim/lazyadam.py View File

@@ -183,6 +183,9 @@ class LazyAdam(Optimizer):
Outputs: Outputs:
Tensor[bool], the value is True. Tensor[bool], the value is True.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay


+ 3
- 0
mindspore/nn/optim/momentum.py View File

@@ -104,6 +104,9 @@ class Momentum(Optimizer):
Raises: Raises:
ValueError: If the momentum is less than 0.0. ValueError: If the momentum is less than 0.0.


Supported Platforms:
``Ascend`` ``GPU`` ``CPU``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay


+ 3
- 0
mindspore/nn/optim/optimizer.py View File

@@ -83,6 +83,9 @@ class Optimizer(Cell):
Raises: Raises:
ValueError: If the learning_rate is a Tensor, but the dimension of tensor is greater than 1. ValueError: If the learning_rate is a Tensor, but the dimension of tensor is greater than 1.
TypeError: If the learning_rate is not any of the three types: float, Tensor, nor Iterable. TypeError: If the learning_rate is not any of the three types: float, Tensor, nor Iterable.

Supported Platforms:
``Ascend`` ``GPU``
""" """


def __init__(self, learning_rate, parameters, weight_decay=0.0, loss_scale=1.0): def __init__(self, learning_rate, parameters, weight_decay=0.0, loss_scale=1.0):


+ 3
- 0
mindspore/nn/optim/proximal_ada_grad.py View File

@@ -107,6 +107,9 @@ class ProximalAdagrad(Optimizer):
Outputs: Outputs:
Tensor[bool], the value is True. Tensor[bool], the value is True.
Supported Platforms:
``Ascend``
Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay


+ 3
- 0
mindspore/nn/optim/rmsprop.py View File

@@ -130,6 +130,9 @@ class RMSProp(Optimizer):
Outputs: Outputs:
Tensor[bool], the value is True. Tensor[bool], the value is True.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay


+ 3
- 0
mindspore/nn/optim/sgd.py View File

@@ -103,6 +103,9 @@ class SGD(Optimizer):
Raises: Raises:
ValueError: If the momentum, dampening or weight_decay value is less than 0.0. ValueError: If the momentum, dampening or weight_decay value is less than 0.0.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay >>> #1) All parameters use the same learning rate and weight decay


+ 18
- 0
mindspore/nn/wrap/cell_wrapper.py View File

@@ -78,6 +78,9 @@ class WithLossCell(Cell):
Outputs: Outputs:
Tensor, a scalar tensor with shape :math:`()`. Tensor, a scalar tensor with shape :math:`()`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
@@ -134,6 +137,9 @@ class WithGradCell(Cell):
Outputs: Outputs:
list, a list of Tensors with identical shapes as trainable weights. list, a list of Tensors with identical shapes as trainable weights.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> # For a defined network Net without loss function >>> # For a defined network Net without loss function
>>> net = Net() >>> net = Net()
@@ -187,6 +193,9 @@ class TrainOneStepCell(Cell):
Outputs: Outputs:
Tensor, a scalar Tensor with shape :math:`()`. Tensor, a scalar Tensor with shape :math:`()`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> net = Net() >>> net = Net()
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits()
@@ -249,6 +258,9 @@ class GetNextSingleOp(Cell):


For detailed information, refer to `ops.operations.GetNext`. For detailed information, refer to `ops.operations.GetNext`.


Supported Platforms:
``GPU``

Examples: Examples:
>>> # Refer to dataset_helper.py for detail usage. >>> # Refer to dataset_helper.py for detail usage.
>>> data_set = get_dataset() >>> data_set = get_dataset()
@@ -346,6 +358,9 @@ class WithEvalCell(Cell):
Tuple, containing a scalar loss Tensor, a network output Tensor of shape :math:`(N, \ldots)` Tuple, containing a scalar loss Tensor, a network output Tensor of shape :math:`(N, \ldots)`
and a label Tensor of shape :math:`(N, \ldots)`. and a label Tensor of shape :math:`(N, \ldots)`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> # For a defined network Net without loss function >>> # For a defined network Net without loss function
>>> net = Net() >>> net = Net()
@@ -380,6 +395,9 @@ class ParameterUpdate(Cell):
Raises: Raises:
KeyError: If parameter with the specified name does not exist. KeyError: If parameter with the specified name does not exist.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> network = Net() >>> network = Net()
>>> param = network.parameters_dict()['learning_rate'] >>> param = network.parameters_dict()['learning_rate']


+ 3
- 0
mindspore/nn/wrap/grad_reducer.py View File

@@ -245,6 +245,9 @@ class DistributedGradReducer(Cell):
Raises: Raises:
ValueError: If degree is not a int or less than 0. ValueError: If degree is not a int or less than 0.


Supported Platforms:
``Ascend``

Examples: Examples:
>>> # This example should be run with multiple processes. Refer to the run_distribute_train.sh >>> # This example should be run with multiple processes. Refer to the run_distribute_train.sh
>>> import os >>> import os


+ 9
- 0
mindspore/nn/wrap/loss_scale.py View File

@@ -75,6 +75,9 @@ class DynamicLossScaleUpdateCell(Cell):
Outputs: Outputs:
Tensor, a scalar Tensor with shape :math:`()`. Tensor, a scalar Tensor with shape :math:`()`.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> import numpy as np >>> import numpy as np
>>> from mindspore import Tensor, Parameter, nn >>> from mindspore import Tensor, Parameter, nn
@@ -155,6 +158,9 @@ class FixedLossScaleUpdateCell(Cell):
Args: Args:
loss_scale_value (float): Initializes loss scale. loss_scale_value (float): Initializes loss scale.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> import numpy as np >>> import numpy as np
>>> from mindspore import Tensor, Parameter, nn >>> from mindspore import Tensor, Parameter, nn
@@ -220,6 +226,9 @@ class TrainOneStepWithLossScaleCell(TrainOneStepCell):
- **overflow** (Tensor) - Tensor with shape :math:`()`, type is bool. - **overflow** (Tensor) - Tensor with shape :math:`()`, type is bool.
- **loss scaling value** (Tensor) - Tensor with shape :math:`()` - **loss scaling value** (Tensor) - Tensor with shape :math:`()`


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> import numpy as np >>> import numpy as np
>>> from mindspore import Tensor, Parameter, nn >>> from mindspore import Tensor, Parameter, nn


+ 6
- 0
mindspore/ops/operations/array_ops.py View File

@@ -1135,6 +1135,9 @@ class Ones(PrimitiveWithInfer):
Outputs: Outputs:
Tensor, has the same type and shape as input shape value. Tensor, has the same type and shape as input shape value.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> from mindspore.ops import operations as P >>> from mindspore.ops import operations as P
>>> ones = P.Ones() >>> ones = P.Ones()
@@ -1185,6 +1188,9 @@ class Zeros(PrimitiveWithInfer):
Outputs: Outputs:
Tensor, has the same type and shape as input shape value. Tensor, has the same type and shape as input shape value.


Supported Platforms:
``Ascend`` ``GPU``

Examples: Examples:
>>> from mindspore.ops import operations as P >>> from mindspore.ops import operations as P
>>> zeros = P.Zeros() >>> zeros = P.Zeros()


Loading…
Cancel
Save