Merge pull request !898 from YuJianfeng/mastertags/v0.3.0-alpha
| @@ -20,6 +20,7 @@ | |||
| #include "pre_activate/ascend/ir_fission/bn_split.h" | |||
| #include "pre_activate/ascend/ir_fission/bn_grad_split.h" | |||
| #include "pre_activate/ascend/ir_fission/batch_norm_grad_split.h" | |||
| #include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h" | |||
| #include "pre_activate/ascend/ir_fusion/fused_batch_norm_fusion.h" | |||
| #include "pre_activate/ascend/ir_fission/layer_norm_grad_split.h" | |||
| #include "pre_activate/pass/communication_op_fusion.h" | |||
| @@ -76,6 +77,7 @@ namespace opt { | |||
| namespace { | |||
| void AddAscendBackendOptionalIRFusion(PassManager *ir_fusion_pm) { | |||
| MS_EXCEPTION_IF_NULL(ir_fusion_pm); | |||
| ir_fusion_pm->AddPass(std::make_shared<BatchNormBertFission>()); | |||
| ir_fusion_pm->AddPass(std::make_shared<SquareSumFusion>()); | |||
| ir_fusion_pm->AddPass(std::make_shared<ClipByNormNoDivSquareSumFusion>()); | |||
| ir_fusion_pm->AddPass(std::make_shared<LambUpdateWithLRRuleFusion>()); | |||
| @@ -0,0 +1,170 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h" | |||
| #include <vector> | |||
| #include <memory> | |||
| #include <algorithm> | |||
| #include "session/anf_runtime_algorithm.h" | |||
| #include "pre_activate/common/helper.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| namespace { | |||
| const std::vector<int> kOutputIndex{0, 3, 4, 5}; | |||
| constexpr size_t kBatchNormRealOutputNum = 3; | |||
| bool CompareTupleGetitem(const AnfNodePtr &n1, const AnfNodePtr &n2) { | |||
| MS_EXCEPTION_IF_NULL(n1); | |||
| MS_EXCEPTION_IF_NULL(n2); | |||
| auto n1_cnode = n1->cast<CNodePtr>(); | |||
| auto n2_cnode = n2->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(n1_cnode); | |||
| MS_EXCEPTION_IF_NULL(n2_cnode); | |||
| auto index_input1 = n1_cnode->input(kInputNodeOutputIndexInTupleGetItem); | |||
| MS_EXCEPTION_IF_NULL(index_input1); | |||
| auto value_node1 = index_input1->cast<ValueNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(value_node1); | |||
| auto index_input2 = n2_cnode->input(kInputNodeOutputIndexInTupleGetItem); | |||
| MS_EXCEPTION_IF_NULL(index_input2); | |||
| auto value_node2 = index_input2->cast<ValueNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(value_node2); | |||
| return GetValue<int>(value_node1->value()) < GetValue<int>(value_node2->value()); | |||
| } | |||
| bool GetBatchNormOutputs(const FuncGraphPtr &func_graph, const AnfNodePtr &bn, std::vector<AnfNodePtr> *bn_outputs) { | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| MS_EXCEPTION_IF_NULL(bn_outputs); | |||
| auto manager = func_graph->manager(); | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| if (manager->node_users().find(bn) == manager->node_users().end()) { | |||
| return false; | |||
| } | |||
| size_t output_num = 0; | |||
| for (const auto &node_index : manager->node_users()[bn]) { | |||
| AnfNodePtr output = node_index.first; | |||
| MS_EXCEPTION_IF_NULL(output); | |||
| auto tuple_getiterm_cnode = output->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(tuple_getiterm_cnode); | |||
| auto index_node = tuple_getiterm_cnode->input(kInputNodeOutputIndexInTupleGetItem); | |||
| MS_EXCEPTION_IF_NULL(index_node); | |||
| auto value_node = index_node->cast<ValueNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(value_node); | |||
| int index = GetValue<int>(value_node->value()); | |||
| if (std::find(kOutputIndex.begin(), kOutputIndex.end(), index) == kOutputIndex.end()) { | |||
| return false; | |||
| } | |||
| bn_outputs->push_back(output); | |||
| output_num++; | |||
| } | |||
| return output_num == kBatchNormRealOutputNum; | |||
| } | |||
| AnfNodePtr CreateBNTrainingReduce(const FuncGraphPtr &func_graph, const AnfNodePtr &bn) { | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| MS_EXCEPTION_IF_NULL(bn); | |||
| auto bn_cnode = bn->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(bn_cnode); | |||
| CheckCNodeInputSize(bn_cnode, kBatchNormInputNum + 1); | |||
| std::vector<AnfNodePtr> bn_training_reduce_inputs = { | |||
| NewValueNode(std::make_shared<Primitive>(kBNTrainingReduceOpName)), bn_cnode->input(1)}; | |||
| auto bn_training_reduce = func_graph->NewCNode(bn_training_reduce_inputs); | |||
| MS_EXCEPTION_IF_NULL(bn_training_reduce); | |||
| auto bn_input1 = bn_cnode->input(2); | |||
| MS_EXCEPTION_IF_NULL(bn_input1); | |||
| auto bn_input2 = bn_cnode->input(3); | |||
| MS_EXCEPTION_IF_NULL(bn_input2); | |||
| AbstractBasePtrList abstract_list{bn_input1->abstract(), bn_input2->abstract()}; | |||
| auto abstract_tuple = std::make_shared<abstract::AbstractTuple>(abstract_list); | |||
| bn_training_reduce->set_abstract(abstract_tuple); | |||
| bn_training_reduce->set_scope(bn->scope()); | |||
| AnfAlgo::CopyNodeAttrs(bn, bn_training_reduce); | |||
| return bn_training_reduce; | |||
| } | |||
| AnfNodePtr CreateBNTrainingUpdateV2(const FuncGraphPtr &func_graph, const AnfNodePtr &bn, | |||
| const std::vector<AnfNodePtr> &bn_training_reduce_outputs) { | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| MS_EXCEPTION_IF_NULL(bn); | |||
| auto bn_cnode = bn->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(bn_cnode); | |||
| CheckCNodeInputSize(bn_cnode, kBatchNormInputNum + 1); | |||
| if (bn_training_reduce_outputs.size() != kBNTrainingReduceOutputNum) { | |||
| MS_LOG(EXCEPTION) << "The output size of node bn_training_reduce must be " << kBNTrainingReduceOutputNum | |||
| << ", but it is " << bn_training_reduce_outputs.size(); | |||
| } | |||
| std::vector<AnfNodePtr> bn_training_update_v2_inputs = { | |||
| NewValueNode(std::make_shared<Primitive>(kBNTrainingUpdateV2OpName)), | |||
| bn_cnode->input(1), | |||
| bn_training_reduce_outputs[0], | |||
| bn_training_reduce_outputs[1], | |||
| bn_cnode->input(2), | |||
| bn_cnode->input(3)}; | |||
| auto bn_training_update_v2 = func_graph->NewCNode(bn_training_update_v2_inputs); | |||
| MS_EXCEPTION_IF_NULL(bn_training_update_v2); | |||
| auto bn_abstract_tuple = dyn_cast<abstract::AbstractTuple>(bn->abstract()); | |||
| MS_EXCEPTION_IF_NULL(bn_abstract_tuple); | |||
| if (bn_abstract_tuple->elements().size() != kBatchNormOutputNum) { | |||
| MS_LOG(EXCEPTION) << "The abstract size of node bn must be " << kBatchNormOutputNum << ", but it is " | |||
| << bn_abstract_tuple->elements().size(); | |||
| } | |||
| std::vector<AbstractBasePtr> abstract_list{bn_abstract_tuple->elements()[0], bn_abstract_tuple->elements()[3], | |||
| bn_abstract_tuple->elements()[4]}; | |||
| auto abstract_tuple = std::make_shared<abstract::AbstractTuple>(abstract_list); | |||
| bn_training_update_v2->set_abstract(abstract_tuple); | |||
| bn_training_update_v2->set_scope(bn->scope()); | |||
| AnfAlgo::CopyNodeAttrs(bn, bn_training_update_v2); | |||
| return bn_training_update_v2; | |||
| } | |||
| } // namespace | |||
| const BaseRef BatchNormBertFission::DefinePattern() const { | |||
| VarPtr Xs = std::make_shared<SeqVar>(); | |||
| return VectorRef({prim::kPrimBatchNorm, Xs}); | |||
| } | |||
| const AnfNodePtr BatchNormBertFission::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, | |||
| const EquivPtr &) const { | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| std::vector<AnfNodePtr> bn_outputs; | |||
| if (!GetBatchNormOutputs(func_graph, node, &bn_outputs)) { | |||
| return nullptr; | |||
| } | |||
| AnfNodePtr bn_training_reduce = CreateBNTrainingReduce(func_graph, node); | |||
| std::vector<AnfNodePtr> bn_training_reduce_outputs; | |||
| CreateMultipleOutputsOfAnfNode(func_graph, bn_training_reduce, kBNTrainingReduceOutputNum, | |||
| &bn_training_reduce_outputs); | |||
| AnfNodePtr bn_training_update_v2 = CreateBNTrainingUpdateV2(func_graph, node, bn_training_reduce_outputs); | |||
| std::vector<AnfNodePtr> bn_training_update_v2_outputs; | |||
| CreateMultipleOutputsOfAnfNode(func_graph, bn_training_update_v2, kBNTrainingUpdateV2OutputNum, | |||
| &bn_training_update_v2_outputs); | |||
| if (bn_training_update_v2_outputs.size() != kBNTrainingUpdateV2OutputNum) { | |||
| MS_LOG(EXCEPTION) << "The output size of node bn_training_reduce must be " << kBNTrainingUpdateV2OutputNum | |||
| << ", but it is " << bn_training_update_v2_outputs.size(); | |||
| } | |||
| auto manager = func_graph->manager(); | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| sort(bn_outputs.begin(), bn_outputs.end(), CompareTupleGetitem); | |||
| size_t output_index = 0; | |||
| for (const auto &output : bn_outputs) { | |||
| (void)manager->Replace(output, bn_training_update_v2_outputs[output_index]); | |||
| output_index++; | |||
| } | |||
| return nullptr; | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,32 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_ | |||
| #define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_ | |||
| #include "pre_activate/common/optimizer.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class BatchNormBertFission : public PatternProcessPass { | |||
| public: | |||
| explicit BatchNormBertFission(bool multigraph = true) : PatternProcessPass("batch_norm_bert_fission", multigraph) {} | |||
| ~BatchNormBertFission() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||
| }; | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_BERT_FISSION_H_ | |||
| @@ -47,6 +47,8 @@ constexpr size_t kBn2ReluOutputNum = 4; | |||
| constexpr size_t kBnInputNum = 6; | |||
| constexpr size_t kBnOutputNum = 5; | |||
| constexpr size_t kBatchNormInputNum = 5; | |||
| constexpr size_t kBatchNormOutputNum = 5; | |||
| constexpr size_t kBN1OutputNum = 2; | |||
| constexpr size_t kBN2OutputNum = 3; | |||
| @@ -61,6 +63,7 @@ constexpr size_t kBNGrad3OutputNum = 1; | |||
| constexpr size_t kBNTrainingReduceOutputNum = 2; | |||
| constexpr size_t kBNTrainingUpdateOutputNum = 5; | |||
| constexpr size_t kBNTrainingUpdateV2OutputNum = 3; | |||
| constexpr size_t kBNTrainingUpdateGradOutputNum = 2; | |||
| constexpr size_t kSingleOutputNum = 1; | |||
| @@ -52,6 +52,7 @@ constexpr auto kTopKOpName = "TopK"; | |||
| constexpr auto kExtractImagePatchesOpName = "ExtractImagePatches"; | |||
| constexpr auto kBNTrainingReduceOpName = "BNTrainingReduce"; | |||
| constexpr auto kBNTrainingUpdateOpName = "BNTrainingUpdate"; | |||
| constexpr auto kBNTrainingUpdateV2OpName = "BNTrainingUpdateV2"; | |||
| constexpr auto kSimpleMeanGradOpName = "SimpleMeanGrad"; | |||
| constexpr auto kMeanGradOpName = "MeanGrad"; | |||
| constexpr auto kSliceOpName = "Slice"; | |||
| @@ -0,0 +1,54 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "pre_activate/ascend/ir_fission/batch_norm_bert_fission.h" | |||
| #include "common/backend_common_test.h" | |||
| #include "common/py_func_graph_fetcher.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class TestHWBatchNormBertFission : public BackendCommon { | |||
| public: | |||
| TestHWBatchNormBertFission() : get_py_fun_("gtest_input.pre_activate.batch_norm_bert_fission_test", true) {} | |||
| ~TestHWBatchNormBertFission() override = default; | |||
| UT::PyFuncGraphFetcher get_py_fun_; | |||
| }; | |||
| TEST_F(TestHWBatchNormBertFission, test_fused_batch_norm_fusion) { | |||
| FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_batch_norm_bert_fission", "before"); | |||
| EXPECT_NE(g, nullptr); | |||
| std::vector<int> shp_x{32, 64, 112, 112}; | |||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x); | |||
| std::vector<int> shp_y{64}; | |||
| auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y); | |||
| AbstractBasePtrList args_spec_list{x_abstract}; | |||
| for (size_t i = 0; i < 4; ++i) { | |||
| args_spec_list.push_back(y_abstract); | |||
| } | |||
| auto kg = GetKernelGraph(g, args_spec_list); | |||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| auto pm = std::make_shared<opt::PassManager>(); | |||
| pm->AddPass(std::make_shared<opt::BatchNormBertFission>()); | |||
| optimizer->AddPassManager(pm); | |||
| FuncGraphPtr new_graph = optimizer->Optimize(kg); | |||
| FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_batch_norm_bert_fission", "after"); | |||
| EXPECT_TRUE(CheckEqualGraph(g_after, new_graph)); | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import Primitive | |||
| make_tuple = Primitive('make_tuple') | |||
| tuple_getitem = Primitive('tuple_getitem') | |||
| BatchNorm = P.BatchNorm() | |||
| BNTrainingReduce = Primitive('BNTrainingReduce') | |||
| BNTrainingUpdateV2 = Primitive('BNTrainingUpdateV2') | |||
| class FnDict: | |||
| def __init__(self): | |||
| self.fnDict = {} | |||
| def __call__(self, fn): | |||
| self.fnDict[fn.__name__] = fn | |||
| def __getitem__(self, name): | |||
| return self.fnDict[name] | |||
| def test_batch_norm_bert_fission(tag): | |||
| fns = FnDict() | |||
| @fns | |||
| def before(input0, input1, input2, input3, input4): | |||
| batch_norm = BatchNorm(input0, input1, input2, input3, input4) | |||
| outputs = make_tuple(tuple_getitem(batch_norm, 0), tuple_getitem(batch_norm, 3), tuple_getitem(batch_norm, 4)) | |||
| output = tuple_getitem(outputs, 0) | |||
| return output | |||
| @fns | |||
| def after(input0, input1, input2, input3, input4): | |||
| bn_training_reduce = BNTrainingReduce(input0) | |||
| bn_training_update_v2 = BNTrainingUpdateV2(input0, tuple_getitem(bn_training_reduce, 0), | |||
| tuple_getitem(bn_training_reduce, 1), input1, input2) | |||
| outputs = make_tuple(tuple_getitem(bn_training_update_v2, 0), tuple_getitem(bn_training_update_v2, 1), | |||
| tuple_getitem(bn_training_update_v2, 2)) | |||
| output = tuple_getitem(outputs, 0) | |||
| return make_tuple(output) | |||
| return fns[tag] | |||