From: @peilin-wang Reviewed-by: @robingrosman Signed-off-by: @robingrosmantags/v1.2.0-rc1
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -222,6 +222,8 @@ void ElewiseCmp(const int &nums, enum BroadcastOpType op, const T *x0, const T * | |||||
| } | } | ||||
| } | } | ||||
| template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const double *x0, const double *x1, bool *y, | |||||
| cudaStream_t stream); | |||||
| template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, bool *y, | template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, bool *y, | ||||
| cudaStream_t stream); | cudaStream_t stream); | ||||
| template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, bool *y, | template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, bool *y, | ||||
| @@ -292,6 +294,8 @@ void ElewiseArith(const int &nums, enum BroadcastOpType op, const half *x0, cons | |||||
| } | } | ||||
| } | } | ||||
| template void ElewiseArith(const int &nums, enum BroadcastOpType op, const double *x0, const double *x1, double *y, | |||||
| cudaStream_t stream); | |||||
| template void ElewiseArith(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, float *y, | template void ElewiseArith(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, float *y, | ||||
| cudaStream_t stream); | cudaStream_t stream); | ||||
| template void ElewiseArith(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, half *y, | template void ElewiseArith(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, half *y, | ||||
| @@ -372,6 +376,9 @@ void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t> | |||||
| } | } | ||||
| } | } | ||||
| template void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims, | |||||
| const std::vector<size_t> &y_dims, enum BroadcastOpType op, const double *x0, | |||||
| const double *x1, bool *y, cudaStream_t stream); | |||||
| template void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims, | template void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims, | ||||
| const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0, const float *x1, | const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0, const float *x1, | ||||
| bool *y, cudaStream_t stream); | bool *y, cudaStream_t stream); | ||||
| @@ -501,6 +508,9 @@ void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t | |||||
| } | } | ||||
| } | } | ||||
| template void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims, | |||||
| const std::vector<size_t> &y_dims, enum BroadcastOpType op, const double *x0, | |||||
| const double *x1, double *y, cudaStream_t stream); | |||||
| template void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims, | template void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims, | ||||
| const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0, | const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0, | ||||
| const float *x1, float *y, cudaStream_t stream); | const float *x1, float *y, cudaStream_t stream); | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -18,6 +18,20 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace kernel { | namespace kernel { | ||||
| // fp64 | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| Add, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), | |||||
| BroadcastOpGpuKernel, double) | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| Sub, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), | |||||
| BroadcastOpGpuKernel, double) | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| Mul, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), | |||||
| BroadcastOpGpuKernel, double) | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| Div, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), | |||||
| BroadcastOpGpuKernel, double) | |||||
| // fp32 | // fp32 | ||||
| MS_REG_GPU_KERNEL_ONE( | MS_REG_GPU_KERNEL_ONE( | ||||
| Greater, | Greater, | ||||
| @@ -1,5 +1,5 @@ | |||||
| /** | /** | ||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| * | * | ||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | * Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| * you may not use this file except in compliance with the License. | * you may not use this file except in compliance with the License. | ||||
| @@ -31,6 +31,10 @@ MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | ||||
| GpuConvertToDynamicShapeGpuKernel, float) | GpuConvertToDynamicShapeGpuKernel, float) | ||||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), | |||||
| GpuConvertToDynamicShapeGpuKernel, double) | |||||
| MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, | ||||
| KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), | KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), | ||||
| GpuConvertToDynamicShapeGpuKernel, int8_t) | GpuConvertToDynamicShapeGpuKernel, int8_t) | ||||
| @@ -1,4 +1,4 @@ | |||||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||||
| # Copyright 2019-2021 Huawei Technologies Co., Ltd | |||||
| # | # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | # you may not use this file except in compliance with the License. | ||||
| @@ -25,34 +25,32 @@ from mindspore.common.parameter import Parameter | |||||
| from mindspore.ops import operations as P | from mindspore.ops import operations as P | ||||
| from mindspore.ops.operations import _inner_ops as inner | from mindspore.ops.operations import _inner_ops as inner | ||||
| context.set_context(device_target='GPU') | |||||
| class TensroAdd(nn.Cell): | |||||
| def __init__(self): | |||||
| super(TensroAdd, self).__init__() | |||||
| class AddNet(nn.Cell): | |||||
| def __init__(self, nptype): | |||||
| super(AddNet, self).__init__() | |||||
| self.add = P.Add() | self.add = P.Add() | ||||
| np.random.seed(0) | |||||
| self.x = Parameter(initializer( | self.x = Parameter(initializer( | ||||
| Tensor(np.random.randn(2, 0).astype(np.float32)), [2, 0]), name='x') | |||||
| Tensor(np.random.randn(2, 0).astype(nptype)), [2, 0]), name='x') | |||||
| self.y = Parameter(initializer( | self.y = Parameter(initializer( | ||||
| Tensor(np.random.randn(2, 1).astype(np.float32)), [2, 1]), name='y') | |||||
| Tensor(np.random.randn(2, 1).astype(nptype)), [2, 1]), name='y') | |||||
| self.x1 = Parameter(initializer( | self.x1 = Parameter(initializer( | ||||
| Tensor(np.arange(3).reshape(3).astype(np.float32)), [3]), name='x1') | |||||
| Tensor(np.arange(3).reshape(3).astype(nptype)), [3]), name='x1') | |||||
| self.y1 = Parameter(initializer( | self.y1 = Parameter(initializer( | ||||
| Tensor(np.array([2]).astype(np.float32)), [1]), name='y1') | |||||
| Tensor(np.array([2]).astype(nptype)), [1]), name='y1') | |||||
| self.x2 = Parameter(initializer( | self.x2 = Parameter(initializer( | ||||
| Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='x2') | |||||
| Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='x2') | |||||
| self.y2 = Parameter(initializer( | self.y2 = Parameter(initializer( | ||||
| Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y2') | |||||
| Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='y2') | |||||
| self.x3 = Parameter(initializer( | self.x3 = Parameter(initializer( | ||||
| Tensor(np.arange(1 * 1 * 3 * 3).reshape(1, 1, 3, 3).astype(np.float32)), [1, 1, 3, 3]), name='x3') | |||||
| Tensor(np.arange(1 * 1 * 3 * 3).reshape(1, 1, 3, 3).astype(nptype)), [1, 1, 3, 3]), name='x3') | |||||
| self.y3 = Parameter(initializer( | self.y3 = Parameter(initializer( | ||||
| Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y3') | |||||
| Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='y3') | |||||
| @ms_function | @ms_function | ||||
| def construct(self): | def construct(self): | ||||
| @@ -61,14 +59,13 @@ class TensroAdd(nn.Cell): | |||||
| self.add(self.x3, self.y3)) | self.add(self.x3, self.y3)) | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_TensorAdd(): | |||||
| add = TensroAdd() | |||||
| output = add() | |||||
| def add(nptype): | |||||
| context.set_context(device_target='GPU') | |||||
| add_net = AddNet(nptype) | |||||
| output = add_net() | |||||
| expect0 = np.array([]) | expect0 = np.array([]) | ||||
| expect1 = np.array([2, 3, 4]) | |||||
| expect1 = np.array([2, 3, 4]).astype(nptype) | |||||
| expect2 = np.array( | expect2 = np.array( | ||||
| [[[[0., 2., 4.], | [[[[0., 2., 4.], | ||||
| [6., 8., 10.], | [6., 8., 10.], | ||||
| @@ -96,7 +93,7 @@ def test_TensorAdd(): | |||||
| [138., 140., 142.]], | [138., 140., 142.]], | ||||
| [[144., 146., 148.], | [[144., 146., 148.], | ||||
| [150., 152., 154.], | [150., 152., 154.], | ||||
| [156., 158., 160.]]]]) | |||||
| [156., 158., 160.]]]]).astype(nptype) | |||||
| expect3 = np.array( | expect3 = np.array( | ||||
| [[[[0., 2., 4.], | [[[[0., 2., 4.], | ||||
| [6., 8., 10.], | [6., 8., 10.], | ||||
| @@ -124,13 +121,42 @@ def test_TensorAdd(): | |||||
| [75., 77., 79.]], | [75., 77., 79.]], | ||||
| [[72., 74., 76.], | [[72., 74., 76.], | ||||
| [78., 80., 82.], | [78., 80., 82.], | ||||
| [84., 86., 88.]]]] | |||||
| ) | |||||
| [84., 86., 88.]]]]).astype(nptype) | |||||
| assert (output[0].asnumpy() == expect0).all() | assert (output[0].asnumpy() == expect0).all() | ||||
| assert (output[1].asnumpy() == expect1).all() | assert (output[1].asnumpy() == expect1).all() | ||||
| assert (output[2].asnumpy() == expect2).all() | assert (output[2].asnumpy() == expect2).all() | ||||
| assert (output[3].asnumpy() == expect3).all() | assert (output[3].asnumpy() == expect3).all() | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_float64(): | |||||
| add(np.float64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_float32(): | |||||
| add(np.float32) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_float16(): | |||||
| add(np.float16) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_int64(): | |||||
| add(np.int64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_int32(): | |||||
| add(np.int32) | |||||
| class Tensoradd_d(nn.Cell): | class Tensoradd_d(nn.Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| super(Tensoradd_d, self).__init__() | super(Tensoradd_d, self).__init__() | ||||
| @@ -142,18 +168,16 @@ class Tensoradd_d(nn.Cell): | |||||
| y = self.test_dynamic(y) | y = self.test_dynamic(y) | ||||
| return self.add(x, y) | return self.add(x, y) | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_TensorAdd_dynamic(): | |||||
| def add_dynamic(nptype): | |||||
| context.set_context(device_target='GPU', mode=context.GRAPH_MODE) | context.set_context(device_target='GPU', mode=context.GRAPH_MODE) | ||||
| net = Tensoradd_d() | net = Tensoradd_d() | ||||
| x1 = Tensor(np.arange(3).reshape(3).astype(np.float32)) | |||||
| y1 = Tensor(np.array([2]).astype(np.float32)) | |||||
| x1 = Tensor(np.arange(3).reshape(3).astype(nptype)) | |||||
| y1 = Tensor(np.array([2]).astype(nptype)) | |||||
| x2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)) | |||||
| y2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)) | |||||
| x2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)) | |||||
| y2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)) | |||||
| expect1 = np.array([2, 3, 4]) | expect1 = np.array([2, 3, 4]) | ||||
| expect2 = np.array( | expect2 = np.array( | ||||
| @@ -189,3 +213,33 @@ def test_TensorAdd_dynamic(): | |||||
| output2 = net(x2, y2) | output2 = net(x2, y2) | ||||
| assert (output1.asnumpy() == expect1).all() | assert (output1.asnumpy() == expect1).all() | ||||
| assert (output2.asnumpy() == expect2).all() | assert (output2.asnumpy() == expect2).all() | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_dynamic_float64(): | |||||
| add_dynamic(np.float64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_dynamic_float32(): | |||||
| add_dynamic(np.float32) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_dynamic_float16(): | |||||
| add_dynamic(np.float16) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_dynamic_int64(): | |||||
| add_dynamic(np.int64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_add_dynamic_int32(): | |||||
| add_dynamic(np.int32) | |||||
| @@ -1,4 +1,4 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| # | # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | # you may not use this file except in compliance with the License. | ||||
| @@ -29,24 +29,17 @@ class NetDiv(nn.Cell): | |||||
| def construct(self, x, y): | def construct(self, x, y): | ||||
| return self.div(x, y) | return self.div(x, y) | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_div(): | |||||
| x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) | |||||
| y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) | |||||
| x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) | |||||
| y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) | |||||
| x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32) | |||||
| y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) | |||||
| x3_np = np.random.randint(1, 5, 1).astype(np.float32) | |||||
| y3_np = np.random.randint(1, 5, 1).astype(np.float32) | |||||
| x4_np = np.array(768).astype(np.float32) | |||||
| y4_np = np.array(3072.5).astype(np.float32) | |||||
| x5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) | |||||
| y5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16) | |||||
| x6_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.int32) | |||||
| y6_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.int32) | |||||
| def div(nptype): | |||||
| x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype) | |||||
| y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype) | |||||
| x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype) | |||||
| y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(nptype) | |||||
| x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(nptype) | |||||
| y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype) | |||||
| x3_np = np.random.randint(1, 5, 1).astype(nptype) | |||||
| y3_np = np.random.randint(1, 5, 1).astype(nptype) | |||||
| x4_np = np.array(78).astype(nptype) | |||||
| y4_np = np.array(37.5).astype(nptype) | |||||
| x0 = Tensor(x0_np) | x0 = Tensor(x0_np) | ||||
| y0 = Tensor(y0_np) | y0 = Tensor(y0_np) | ||||
| @@ -58,28 +51,24 @@ def test_div(): | |||||
| y3 = Tensor(y3_np) | y3 = Tensor(y3_np) | ||||
| x4 = Tensor(x4_np) | x4 = Tensor(x4_np) | ||||
| y4 = Tensor(y4_np) | y4 = Tensor(y4_np) | ||||
| x5 = Tensor(x5_np) | |||||
| y5 = Tensor(y5_np) | |||||
| x6 = Tensor(x6_np) | |||||
| y6 = Tensor(y6_np) | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | ||||
| div = NetDiv() | |||||
| output0 = div(x0, y0) | |||||
| div_net = NetDiv() | |||||
| output0 = div_net(x0, y0) | |||||
| expect0 = np.divide(x0_np, y0_np) | expect0 = np.divide(x0_np, y0_np) | ||||
| diff0 = output0.asnumpy() - expect0 | diff0 = output0.asnumpy() - expect0 | ||||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | error0 = np.ones(shape=expect0.shape) * 1.0e-5 | ||||
| assert np.all(diff0 < error0) | assert np.all(diff0 < error0) | ||||
| assert output0.shape == expect0.shape | assert output0.shape == expect0.shape | ||||
| output1 = div(x1, y1) | |||||
| output1 = div_net(x1, y1) | |||||
| expect1 = np.divide(x1_np, y1_np) | expect1 = np.divide(x1_np, y1_np) | ||||
| diff1 = output1.asnumpy() - expect1 | diff1 = output1.asnumpy() - expect1 | ||||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | error1 = np.ones(shape=expect1.shape) * 1.0e-5 | ||||
| assert np.all(diff1 < error1) | assert np.all(diff1 < error1) | ||||
| assert output1.shape == expect1.shape | assert output1.shape == expect1.shape | ||||
| output2 = div(x2, y2) | |||||
| output2 = div_net(x2, y2) | |||||
| expect2 = np.divide(x2_np, y2_np) | expect2 = np.divide(x2_np, y2_np) | ||||
| diff2 = output2.asnumpy() - expect2 | diff2 = output2.asnumpy() - expect2 | ||||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | error2 = np.ones(shape=expect2.shape) * 1.0e-5 | ||||
| @@ -87,30 +76,46 @@ def test_div(): | |||||
| assert output2.shape == expect2.shape | assert output2.shape == expect2.shape | ||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') | context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') | ||||
| output3 = div(x3, y3) | |||||
| output3 = div_net(x3, y3) | |||||
| expect3 = np.divide(x3_np, y3_np) | expect3 = np.divide(x3_np, y3_np) | ||||
| diff3 = output3.asnumpy() - expect3 | diff3 = output3.asnumpy() - expect3 | ||||
| error3 = np.ones(shape=expect3.shape) * 1.0e-5 | error3 = np.ones(shape=expect3.shape) * 1.0e-5 | ||||
| assert np.all(diff3 < error3) | assert np.all(diff3 < error3) | ||||
| assert output3.shape == expect3.shape | assert output3.shape == expect3.shape | ||||
| output4 = div(x4, y4) | |||||
| output4 = div_net(x4, y4) | |||||
| expect4 = np.divide(x4_np, y4_np) | expect4 = np.divide(x4_np, y4_np) | ||||
| diff4 = output4.asnumpy() - expect4 | diff4 = output4.asnumpy() - expect4 | ||||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | error4 = np.ones(shape=expect4.shape) * 1.0e-5 | ||||
| assert np.all(diff4 < error4) | assert np.all(diff4 < error4) | ||||
| assert output4.shape == expect4.shape | assert output4.shape == expect4.shape | ||||
| output5 = div(x5, y5) | |||||
| expect5 = np.divide(x5_np, y5_np) | |||||
| diff5 = output5.asnumpy() - expect5 | |||||
| error5 = np.ones(shape=expect5.shape) * 1.0e-5 | |||||
| assert np.all(diff5 < error5) | |||||
| assert output5.shape == expect5.shape | |||||
| output6 = div(x6, y6) | |||||
| expect6 = np.divide(x6_np, y6_np) | |||||
| diff6 = output6.asnumpy() - expect6 | |||||
| error6 = np.ones(shape=expect6.shape) * 1.0e-5 | |||||
| assert np.all(diff6 < error6) | |||||
| assert output6.shape == expect6.shape | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_div_float64(): | |||||
| div(np.float64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_div_float32(): | |||||
| div(np.float32) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_div_float16(): | |||||
| div(np.float16) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_div_int64(): | |||||
| div(np.int64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_div_int32(): | |||||
| div(np.int32) | |||||
| @@ -1,4 +1,4 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # Copyright 2020-2021 Huawei Technologies Co., Ltd | |||||
| # | # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | # you may not use this file except in compliance with the License. | ||||
| @@ -63,6 +63,12 @@ def gpu_convert_to_dynamic_shape_float(dtype): | |||||
| np.random.seed(0) | np.random.seed(0) | ||||
| finfo = np.finfo(dtype) | finfo = np.finfo(dtype) | ||||
| # np.random.uniform will overflow if we use min/max for float64, so we use | |||||
| # the finfo for float32, but still test the operator with float64 input. | |||||
| if dtype == np.float64: | |||||
| finfo = np.finfo(np.float32) | |||||
| float_min = finfo.min | float_min = finfo.min | ||||
| float_max = finfo.max | float_max = finfo.max | ||||
| x = np.random.uniform(low=float_min, high=float_max, size=12).astype(dtype) | x = np.random.uniform(low=float_min, high=float_max, size=12).astype(dtype) | ||||
| @@ -103,6 +109,12 @@ def test_gpu_convert_to_dynamic_shape_float16(): | |||||
| def test_gpu_convert_to_dynamic_shape_float32(): | def test_gpu_convert_to_dynamic_shape_float32(): | ||||
| gpu_convert_to_dynamic_shape_float(np.float32) | gpu_convert_to_dynamic_shape_float(np.float32) | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_gpu_convert_to_dynamic_shape_float64(): | |||||
| gpu_convert_to_dynamic_shape_float(np.float64) | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @pytest.mark.platform_x86_gpu_training | @pytest.mark.platform_x86_gpu_training | ||||
| @pytest.mark.env_onecard | @pytest.mark.env_onecard | ||||
| @@ -1,4 +1,4 @@ | |||||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||||
| # Copyright 2019-2021 Huawei Technologies Co., Ltd | |||||
| # | # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | # you may not use this file except in compliance with the License. | ||||
| @@ -31,20 +31,17 @@ class NetMul(nn.Cell): | |||||
| return self.mul(x, y) | return self.mul(x, y) | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul(): | |||||
| x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| y0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| x1_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| y1_np = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(np.float32) | |||||
| x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32) | |||||
| y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| x3_np = np.random.uniform(-2, 2, 1).astype(np.float32) | |||||
| y3_np = np.random.uniform(-2, 2, 1).astype(np.float32) | |||||
| x4_np = np.array(768).astype(np.float32) | |||||
| y4_np = np.array(3072.5).astype(np.float32) | |||||
| def mul(nptype): | |||||
| x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) | |||||
| y0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) | |||||
| x1_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) | |||||
| y1_np = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(nptype) | |||||
| x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype) | |||||
| y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) | |||||
| x3_np = np.random.uniform(-2, 2, 1).astype(nptype) | |||||
| y3_np = np.random.uniform(-2, 2, 1).astype(nptype) | |||||
| x4_np = np.array(78).astype(nptype) | |||||
| y4_np = np.array(37.5).astype(nptype) | |||||
| x0 = Tensor(x0_np) | x0 = Tensor(x0_np) | ||||
| y0 = Tensor(y0_np) | y0 = Tensor(y0_np) | ||||
| @@ -58,36 +55,36 @@ def test_mul(): | |||||
| y4 = Tensor(y4_np) | y4 = Tensor(y4_np) | ||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | ||||
| mul = NetMul() | |||||
| output0 = mul(x0, y0) | |||||
| mul_net = NetMul() | |||||
| output0 = mul_net(x0, y0) | |||||
| expect0 = np.multiply(x0_np, y0_np) | expect0 = np.multiply(x0_np, y0_np) | ||||
| diff0 = output0.asnumpy() - expect0 | diff0 = output0.asnumpy() - expect0 | ||||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | error0 = np.ones(shape=expect0.shape) * 1.0e-5 | ||||
| assert np.all(diff0 < error0) | assert np.all(diff0 < error0) | ||||
| assert output0.shape == expect0.shape | assert output0.shape == expect0.shape | ||||
| output1 = mul(x1, y1) | |||||
| output1 = mul_net(x1, y1) | |||||
| expect1 = np.multiply(x1_np, y1_np) | expect1 = np.multiply(x1_np, y1_np) | ||||
| diff1 = output1.asnumpy() - expect1 | diff1 = output1.asnumpy() - expect1 | ||||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | error1 = np.ones(shape=expect1.shape) * 1.0e-5 | ||||
| assert np.all(diff1 < error1) | assert np.all(diff1 < error1) | ||||
| assert output1.shape == expect1.shape | assert output1.shape == expect1.shape | ||||
| output2 = mul(x2, y2) | |||||
| output2 = mul_net(x2, y2) | |||||
| expect2 = np.multiply(x2_np, y2_np) | expect2 = np.multiply(x2_np, y2_np) | ||||
| diff2 = output2.asnumpy() - expect2 | diff2 = output2.asnumpy() - expect2 | ||||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | error2 = np.ones(shape=expect2.shape) * 1.0e-5 | ||||
| assert np.all(diff2 < error2) | assert np.all(diff2 < error2) | ||||
| assert output2.shape == expect2.shape | assert output2.shape == expect2.shape | ||||
| output3 = mul(x3, y3) | |||||
| output3 = mul_net(x3, y3) | |||||
| expect3 = np.multiply(x3_np, y3_np) | expect3 = np.multiply(x3_np, y3_np) | ||||
| diff3 = output3.asnumpy() - expect3 | diff3 = output3.asnumpy() - expect3 | ||||
| error3 = np.ones(shape=expect3.shape) * 1.0e-5 | error3 = np.ones(shape=expect3.shape) * 1.0e-5 | ||||
| assert np.all(diff3 < error3) | assert np.all(diff3 < error3) | ||||
| assert output3.shape == expect3.shape | assert output3.shape == expect3.shape | ||||
| output4 = mul(x4, y4) | |||||
| output4 = mul_net(x4, y4) | |||||
| expect4 = np.multiply(x4_np, y4_np) | expect4 = np.multiply(x4_np, y4_np) | ||||
| diff4 = output4.asnumpy() - expect4 | diff4 = output4.asnumpy() - expect4 | ||||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | error4 = np.ones(shape=expect4.shape) * 1.0e-5 | ||||
| @@ -95,42 +92,72 @@ def test_mul(): | |||||
| assert output4.shape == expect4.shape | assert output4.shape == expect4.shape | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | ||||
| mul = NetMul() | |||||
| output0 = mul(x0, y0) | |||||
| mul_net = NetMul() | |||||
| output0 = mul_net(x0, y0) | |||||
| expect0 = np.multiply(x0_np, y0_np) | expect0 = np.multiply(x0_np, y0_np) | ||||
| diff0 = output0.asnumpy() - expect0 | diff0 = output0.asnumpy() - expect0 | ||||
| error0 = np.ones(shape=expect0.shape) * 1.0e-5 | error0 = np.ones(shape=expect0.shape) * 1.0e-5 | ||||
| assert np.all(diff0 < error0) | assert np.all(diff0 < error0) | ||||
| assert output0.shape == expect0.shape | assert output0.shape == expect0.shape | ||||
| output1 = mul(x1, y1) | |||||
| output1 = mul_net(x1, y1) | |||||
| expect1 = np.multiply(x1_np, y1_np) | expect1 = np.multiply(x1_np, y1_np) | ||||
| diff1 = output1.asnumpy() - expect1 | diff1 = output1.asnumpy() - expect1 | ||||
| error1 = np.ones(shape=expect1.shape) * 1.0e-5 | error1 = np.ones(shape=expect1.shape) * 1.0e-5 | ||||
| assert np.all(diff1 < error1) | assert np.all(diff1 < error1) | ||||
| assert output1.shape == expect1.shape | assert output1.shape == expect1.shape | ||||
| output2 = mul(x2, y2) | |||||
| output2 = mul_net(x2, y2) | |||||
| expect2 = np.multiply(x2_np, y2_np) | expect2 = np.multiply(x2_np, y2_np) | ||||
| diff2 = output2.asnumpy() - expect2 | diff2 = output2.asnumpy() - expect2 | ||||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | error2 = np.ones(shape=expect2.shape) * 1.0e-5 | ||||
| assert np.all(diff2 < error2) | assert np.all(diff2 < error2) | ||||
| assert output2.shape == expect2.shape | assert output2.shape == expect2.shape | ||||
| output3 = mul(x3, y3) | |||||
| output3 = mul_net(x3, y3) | |||||
| expect3 = np.multiply(x3_np, y3_np) | expect3 = np.multiply(x3_np, y3_np) | ||||
| diff3 = output3.asnumpy() - expect3 | diff3 = output3.asnumpy() - expect3 | ||||
| error3 = np.ones(shape=expect3.shape) * 1.0e-5 | error3 = np.ones(shape=expect3.shape) * 1.0e-5 | ||||
| assert np.all(diff3 < error3) | assert np.all(diff3 < error3) | ||||
| assert output3.shape == expect3.shape | assert output3.shape == expect3.shape | ||||
| output4 = mul(x4, y4) | |||||
| output4 = mul_net(x4, y4) | |||||
| expect4 = np.multiply(x4_np, y4_np) | expect4 = np.multiply(x4_np, y4_np) | ||||
| diff4 = output4.asnumpy() - expect4 | diff4 = output4.asnumpy() - expect4 | ||||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | error4 = np.ones(shape=expect4.shape) * 1.0e-5 | ||||
| assert np.all(diff4 < error4) | assert np.all(diff4 < error4) | ||||
| assert output4.shape == expect4.shape | assert output4.shape == expect4.shape | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_float64(): | |||||
| mul(np.float64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_float32(): | |||||
| mul(np.float32) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_float16(): | |||||
| mul(np.float16) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_int64(): | |||||
| mul(np.int64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_int32(): | |||||
| mul(np.int32) | |||||
| class NetMul_dynamic(nn.Cell): | class NetMul_dynamic(nn.Cell): | ||||
| def __init__(self): | def __init__(self): | ||||
| super(NetMul_dynamic, self).__init__() | super(NetMul_dynamic, self).__init__() | ||||
| @@ -143,14 +170,12 @@ class NetMul_dynamic(nn.Cell): | |||||
| out = self.mul(x, y) | out = self.mul(x, y) | ||||
| return out | return out | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_dynamic(): | |||||
| x1_np = np.array([768]).astype(np.float32) | |||||
| y1_np = np.array([3072.5]).astype(np.float32) | |||||
| x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32) | |||||
| y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| def mul_dynamic(nptype): | |||||
| x1_np = np.array([78]).astype(nptype) | |||||
| y1_np = np.array([37.5]).astype(nptype) | |||||
| x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype) | |||||
| y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) | |||||
| x1 = Tensor(x1_np) | x1 = Tensor(x1_np) | ||||
| y1 = Tensor(y1_np) | y1 = Tensor(y1_np) | ||||
| @@ -159,10 +184,10 @@ def test_mul_dynamic(): | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | ||||
| mul = NetMul_dynamic() | |||||
| mul_net = NetMul_dynamic() | |||||
| output1 = mul(x1, y1) | |||||
| output2 = mul(x2, y2) | |||||
| output1 = mul_net(x1, y1) | |||||
| output2 = mul_net(x2, y2) | |||||
| expect1 = np.multiply(x1_np, y1_np) | expect1 = np.multiply(x1_np, y1_np) | ||||
| expect2 = np.multiply(x2_np, y2_np) | expect2 = np.multiply(x2_np, y2_np) | ||||
| diff1 = output1.asnumpy() - expect1 | diff1 = output1.asnumpy() - expect1 | ||||
| @@ -173,3 +198,33 @@ def test_mul_dynamic(): | |||||
| error2 = np.ones(shape=expect2.shape) * 1.0e-5 | error2 = np.ones(shape=expect2.shape) * 1.0e-5 | ||||
| assert np.all(diff2 < error2) | assert np.all(diff2 < error2) | ||||
| assert output2.shape == expect2.shape | assert output2.shape == expect2.shape | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_dynamic_float64(): | |||||
| mul_dynamic(np.float64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_dynamic_float32(): | |||||
| mul_dynamic(np.float32) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_dynamic_float16(): | |||||
| mul_dynamic(np.float16) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_dynamic_int64(): | |||||
| mul_dynamic(np.int64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_mul_dynamic_int32(): | |||||
| mul_dynamic(np.int32) | |||||
| @@ -1,4 +1,4 @@ | |||||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||||
| # Copyright 2019-2021 Huawei Technologies Co., Ltd | |||||
| # | # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | # you may not use this file except in compliance with the License. | ||||
| @@ -31,20 +31,17 @@ class Net(nn.Cell): | |||||
| return self.sub(x, y) | return self.sub(x, y) | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_Sub(): | |||||
| np_x0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| np_y0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| np_x1 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| np_y1 = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(np.float32) | |||||
| np_x2 = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32) | |||||
| np_y2 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) | |||||
| np_x3 = np.random.uniform(-2, 2, 1).astype(np.float32) | |||||
| np_y3 = np.random.uniform(-2, 2, 1).astype(np.float32) | |||||
| np_x4 = np.array(768).astype(np.float32) | |||||
| np_y4 = np.array(3072.5).astype(np.float32) | |||||
| def sub(nptype): | |||||
| np_x0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) | |||||
| np_y0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) | |||||
| np_x1 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) | |||||
| np_y1 = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(nptype) | |||||
| np_x2 = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype) | |||||
| np_y2 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) | |||||
| np_x3 = np.random.uniform(-2, 2, 1).astype(nptype) | |||||
| np_y3 = np.random.uniform(-2, 2, 1).astype(nptype) | |||||
| np_x4 = np.array(768).astype(nptype) | |||||
| np_y4 = np.array(3072.5).astype(nptype) | |||||
| x0 = Tensor(np_x0) | x0 = Tensor(np_x0) | ||||
| y0 = Tensor(np_y0) | y0 = Tensor(np_y0) | ||||
| x1 = Tensor(np_x1) | x1 = Tensor(np_x1) | ||||
| @@ -68,12 +65,12 @@ def test_Sub(): | |||||
| error4 = np.ones(shape=expect4.shape) * 1.0e-5 | error4 = np.ones(shape=expect4.shape) * 1.0e-5 | ||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | ||||
| sub = Net() | |||||
| output0 = sub(x0, y0) | |||||
| output1 = sub(x1, y1) | |||||
| output2 = sub(x2, y2) | |||||
| output3 = sub(x3, y3) | |||||
| output4 = sub(x4, y4) | |||||
| sub_net = Net() | |||||
| output0 = sub_net(x0, y0) | |||||
| output1 = sub_net(x1, y1) | |||||
| output2 = sub_net(x2, y2) | |||||
| output3 = sub_net(x3, y3) | |||||
| output4 = sub_net(x4, y4) | |||||
| diff0 = output0.asnumpy() - expect0 | diff0 = output0.asnumpy() - expect0 | ||||
| assert np.all(diff0 < error0) | assert np.all(diff0 < error0) | ||||
| assert output0.shape == expect0.shape | assert output0.shape == expect0.shape | ||||
| @@ -91,12 +88,12 @@ def test_Sub(): | |||||
| assert output4.shape == expect4.shape | assert output4.shape == expect4.shape | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | ||||
| sub = Net() | |||||
| output0 = sub(x0, y0) | |||||
| output1 = sub(x1, y1) | |||||
| output2 = sub(x2, y2) | |||||
| output3 = sub(x3, y3) | |||||
| output4 = sub(x4, y4) | |||||
| sub_net = Net() | |||||
| output0 = sub_net(x0, y0) | |||||
| output1 = sub_net(x1, y1) | |||||
| output2 = sub_net(x2, y2) | |||||
| output3 = sub_net(x3, y3) | |||||
| output4 = sub_net(x4, y4) | |||||
| diff0 = output0.asnumpy() - expect0 | diff0 = output0.asnumpy() - expect0 | ||||
| assert np.all(diff0 < error0) | assert np.all(diff0 < error0) | ||||
| assert output0.shape == expect0.shape | assert output0.shape == expect0.shape | ||||
| @@ -112,3 +109,33 @@ def test_Sub(): | |||||
| diff4 = output4.asnumpy() - expect4 | diff4 = output4.asnumpy() - expect4 | ||||
| assert np.all(diff4 < error4) | assert np.all(diff4 < error4) | ||||
| assert output4.shape == expect4.shape | assert output4.shape == expect4.shape | ||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_sub_float64(): | |||||
| sub(np.float64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_sub_float32(): | |||||
| sub(np.float32) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_sub_float16(): | |||||
| sub(np.float16) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_sub_int64(): | |||||
| sub(np.int64) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_sub_int32(): | |||||
| sub(np.int32) | |||||