| @@ -35,7 +35,7 @@ args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | ||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| if args.platform != "GPU": | |||||
| if args.device_target != "GPU": | |||||
| raise ValueError("Only supported GPU now.") | raise ValueError("Only supported GPU now.") | ||||
| net = efficientnet_b0(num_classes=cfg.num_classes, | net = efficientnet_b0(num_classes=cfg.num_classes, | ||||
| @@ -12,26 +12,31 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """export checkpoint file into air models""" | |||||
| """export checkpoint file into air, mindir and onnx models""" | |||||
| import argparse | import argparse | ||||
| import numpy as np | import numpy as np | ||||
| from mindspore import Tensor, context | |||||
| from mindspore.train.serialization import load_checkpoint, export | |||||
| from mindspore import Tensor, context, load_checkpoint, export | |||||
| from src.gat import GAT | from src.gat import GAT | ||||
| from src.config import GatConfig | from src.config import GatConfig | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| parser = argparse.ArgumentParser(description="GAT export") | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||||
| parser.add_argument("--dataset", type=str, default="cora", choices=["cora", "citeseer"], help="Dataset.") | |||||
| parser.add_argument("--file_name", type=str, default="gat", help="output file name.") | |||||
| parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") | |||||
| parser.add_argument("--device_target", type=str, default="Ascend", | |||||
| choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") | |||||
| args = parser.parse_args() | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='GAT_export') | |||||
| parser.add_argument('--ckpt_file', type=str, default='./ckpts/gat.ckpt', help='GAT ckpt file.') | |||||
| parser.add_argument('--output_file', type=str, default='gat.air', help='GAT output air name.') | |||||
| parser.add_argument('--dataset', type=str, default='cora', help='GAT dataset name.') | |||||
| args_opt = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | |||||
| if args_opt.dataset == "citeseer": | |||||
| if __name__ == "__main__": | |||||
| if args.dataset == "citeseer": | |||||
| feature_size = [1, 3312, 3703] | feature_size = [1, 3312, 3703] | ||||
| biases_size = [1, 3312, 3312] | biases_size = [1, 3312, 3312] | ||||
| num_classes = 6 | num_classes = 6 | ||||
| @@ -58,7 +63,7 @@ if __name__ == '__main__': | |||||
| ftr_drop=0.0) | ftr_drop=0.0) | ||||
| gat_net.set_train(False) | gat_net.set_train(False) | ||||
| load_checkpoint(args_opt.ckpt_file, net=gat_net) | |||||
| load_checkpoint(args.ckpt_file, net=gat_net) | |||||
| gat_net.add_flags_recursive(fp16=True) | gat_net.add_flags_recursive(fp16=True) | ||||
| export(gat_net, Tensor(feature), Tensor(biases), file_name=args_opt.output_file, file_format="AIR") | |||||
| export(gat_net, Tensor(feature), Tensor(biases), file_name=args.file_name, file_format=args.file_format) | |||||
| @@ -16,24 +16,27 @@ | |||||
| import argparse | import argparse | ||||
| import numpy as np | import numpy as np | ||||
| from mindspore import Tensor, context | |||||
| from mindspore.train.serialization import load_checkpoint, export | |||||
| from mindspore import Tensor, context, load_checkpoint, export | |||||
| from src.gcn import GCN | from src.gcn import GCN | ||||
| from src.config import ConfigGCN | from src.config import ConfigGCN | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| parser = argparse.ArgumentParser(description="GCN export") | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||||
| parser.add_argument("--dataset", type=str, default="cora", choices=["cora", "citeseer"], help="Dataset.") | |||||
| parser.add_argument("--file_name", type=str, default="gcn", help="output file name.") | |||||
| parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") | |||||
| parser.add_argument("--device_target", type=str, default="Ascend", | |||||
| choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") | |||||
| args = parser.parse_args() | |||||
| if __name__ == '__main__': | |||||
| parser = argparse.ArgumentParser(description='GCN_export') | |||||
| parser.add_argument('--ckpt_file', type=str, default='', help='GCN ckpt file.') | |||||
| parser.add_argument('--output_file', type=str, default='gcn.air', help='GCN output air name.') | |||||
| parser.add_argument('--dataset', type=str, default='cora', help='GCN dataset name.') | |||||
| args_opt = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | |||||
| if __name__ == "__main__": | |||||
| config = ConfigGCN() | config = ConfigGCN() | ||||
| if args_opt.dataset == "cora": | |||||
| if args.dataset == "cora": | |||||
| input_dim = 1433 | input_dim = 1433 | ||||
| class_num = 7 | class_num = 7 | ||||
| adj = Tensor(np.zeros((2708, 2708), np.float64)) | adj = Tensor(np.zeros((2708, 2708), np.float64)) | ||||
| @@ -47,7 +50,7 @@ if __name__ == '__main__': | |||||
| gcn_net = GCN(config, input_dim, class_num) | gcn_net = GCN(config, input_dim, class_num) | ||||
| gcn_net.set_train(False) | gcn_net.set_train(False) | ||||
| load_checkpoint(args_opt.ckpt_file, net=gcn_net) | |||||
| load_checkpoint(args.ckpt_file, net=gcn_net) | |||||
| gcn_net.add_flags_recursive(fp16=True) | gcn_net.add_flags_recursive(fp16=True) | ||||
| export(gcn_net, adj, feature, file_name=args_opt.output_file, file_format="AIR") | |||||
| export(gcn_net, adj, feature, file_name=args.file_name, file_format=args.file_format) | |||||
| @@ -25,11 +25,17 @@ from src.td_config import td_student_net_cfg | |||||
| from src.tinybert_model import BertModelCLS | from src.tinybert_model import BertModelCLS | ||||
| parser = argparse.ArgumentParser(description='tinybert task distill') | parser = argparse.ArgumentParser(description='tinybert task distill') | ||||
| parser.add_argument('--ckpt_file', type=str, required=True, help='tinybert ckpt file.') | |||||
| parser.add_argument('--output_file', type=str, default='tinybert', help='tinybert output air name.') | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="tinybert ckpt file.") | |||||
| parser.add_argument("--file_name", type=str, default="tinybert", help="output file name.") | |||||
| parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") | |||||
| parser.add_argument("--device_target", type=str, default="Ascend", | |||||
| choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") | |||||
| parser.add_argument('--task_name', type=str, default='SST-2', choices=['SST-2', 'QNLI', 'MNLI'], help='task name') | parser.add_argument('--task_name', type=str, default='SST-2', choices=['SST-2', 'QNLI', 'MNLI'], help='task name') | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | |||||
| DEFAULT_NUM_LABELS = 2 | DEFAULT_NUM_LABELS = 2 | ||||
| DEFAULT_SEQ_LENGTH = 128 | DEFAULT_SEQ_LENGTH = 128 | ||||
| DEFAULT_BS = 32 | DEFAULT_BS = 32 | ||||
| @@ -37,8 +43,6 @@ task_params = {"SST-2": {"num_labels": 2, "seq_length": 64}, | |||||
| "QNLI": {"num_labels": 2, "seq_length": 128}, | "QNLI": {"num_labels": 2, "seq_length": 128}, | ||||
| "MNLI": {"num_labels": 3, "seq_length": 128}} | "MNLI": {"num_labels": 3, "seq_length": 128}} | ||||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| class Task: | class Task: | ||||
| """ | """ | ||||
| Encapsulation class of get the task parameter. | Encapsulation class of get the task parameter. | ||||
| @@ -78,4 +82,5 @@ if __name__ == '__main__': | |||||
| token_type_id = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32)) | token_type_id = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32)) | ||||
| input_mask = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32)) | input_mask = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32)) | ||||
| export(eval_model, input_ids, token_type_id, input_mask, file_name=args.output_file, file_format="AIR") | |||||
| input_data = [input_ids, token_type_id, input_mask] | |||||
| export(eval_model, *input_data, file_name=args.file_name, file_format=args.file_format) | |||||
| @@ -13,48 +13,40 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """ | """ | ||||
| ##############export checkpoint file into air and onnx models################# | |||||
| ##############export checkpoint file into air, mindir and onnx models################# | |||||
| """ | """ | ||||
| import argparse | |||||
| import numpy as np | import numpy as np | ||||
| from mindspore import Tensor, nn | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net, export | |||||
| from mindspore import Tensor, context, load_checkpoint, export, load_param_into_net | |||||
| from src.wide_and_deep import WideDeepModel | |||||
| from eval import ModelBuilder | |||||
| from src.config import WideDeepConfig | from src.config import WideDeepConfig | ||||
| class PredictWithSigmoid(nn.Cell): | |||||
| """ | |||||
| PredictWithSigmoid | |||||
| """ | |||||
| def __init__(self, network): | |||||
| super(PredictWithSigmoid, self).__init__() | |||||
| self.network = network | |||||
| self.sigmoid = P.Sigmoid() | |||||
| def construct(self, batch_ids, batch_wts): | |||||
| logits, _, = self.network(batch_ids, batch_wts) | |||||
| pred_probs = self.sigmoid(logits) | |||||
| return pred_probs | |||||
| def get_WideDeep_net(config): | |||||
| """ | |||||
| Get network of wide&deep predict model. | |||||
| """ | |||||
| WideDeep_net = WideDeepModel(config) | |||||
| eval_net = PredictWithSigmoid(WideDeep_net) | |||||
| return eval_net | |||||
| parser = argparse.ArgumentParser(description="wide_and_deep export") | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | |||||
| parser.add_argument("--file_name", type=str, default="wide_and_deep", help="output file name.") | |||||
| parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") | |||||
| parser.add_argument("--device_target", type=str, default="Ascend", | |||||
| choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) | |||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| widedeep_config = WideDeepConfig() | widedeep_config = WideDeepConfig() | ||||
| widedeep_config.argparse_init() | widedeep_config.argparse_init() | ||||
| ckpt_path = widedeep_config.ckpt_path | |||||
| net = get_WideDeep_net(widedeep_config) | |||||
| param_dict = load_checkpoint(ckpt_path) | |||||
| load_param_into_net(net, param_dict) | |||||
| net_builder = ModelBuilder() | |||||
| _, eval_net = net_builder.get_net(widedeep_config) | |||||
| param_dict = load_checkpoint(args.ckpt_file) | |||||
| load_param_into_net(eval_net, param_dict) | |||||
| eval_net.set_train(False) | |||||
| ids = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.int32)) | ids = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.int32)) | ||||
| wts = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.float32)) | wts = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.float32)) | ||||
| input_tensor_list = [ids, wts] | |||||
| export(net, *input_tensor_list, file_name='wide_and_deep', file_format="ONNX") | |||||
| export(net, *input_tensor_list, file_name='wide_and_deep', file_format="AIR") | |||||
| label = Tensor(np.ones([widedeep_config.eval_batch_size, 1]).astype(np.float32)) | |||||
| input_tensor_list = [ids, wts, label] | |||||
| export(eval_net, *input_tensor_list, file_name=args.file_name, file_format=args.file_format) | |||||