| @@ -324,7 +324,7 @@ class GlobalBatchNorm(_BatchNorm): | |||||
| Args: | Args: | ||||
| num_features (int): `C` from an expected input of size (N, C, H, W). | num_features (int): `C` from an expected input of size (N, C, H, W). | ||||
| device_num_each_group (int): The number of device in each group. | |||||
| device_num_each_group (int): The number of devices in each group. | |||||
| eps (float): A value added to the denominator for numerical stability. Default: 1e-5. | eps (float): A value added to the denominator for numerical stability. Default: 1e-5. | ||||
| momentum (float): A floating hyperparameter of the momentum for the | momentum (float): A floating hyperparameter of the momentum for the | ||||
| running_mean and running_var computation. Default: 0.9. | running_mean and running_var computation. Default: 0.9. | ||||
| @@ -350,7 +350,7 @@ class GlobalBatchNorm(_BatchNorm): | |||||
| Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, H_{out}, W_{out})`. | Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, H_{out}, W_{out})`. | ||||
| Examples: | Examples: | ||||
| >>> global_bn_op = nn.GlobalBatchNorm(num_features=3, group=4) | |||||
| >>> global_bn_op = nn.GlobalBatchNorm(num_features=3, device_num_each_group=4) | |||||
| >>> input = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32) | >>> input = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32) | ||||
| >>> global_bn_op(input) | >>> global_bn_op(input) | ||||
| """ | """ | ||||