|
|
|
@@ -162,11 +162,11 @@ class LGamma(Cell): |
|
|
|
The algorithm is: |
|
|
|
|
|
|
|
.. math:: |
|
|
|
lgamma(z + 1) = \frac{(\log(2) + \log(pi))}{2} + (z + 1/2) * log(t(z)) - t(z) + A(z) |
|
|
|
|
|
|
|
t(z) = z + kLanczosGamma + 1/2 |
|
|
|
|
|
|
|
A(z) = kBaseLanczosCoeff + \sum_{k=1}^n \frac{kLanczosCoefficients[i]}{z + k} |
|
|
|
\begin{array}{ll} \\ |
|
|
|
lgamma(z + 1) = \frac{(\log(2) + \log(pi))}{2} + (z + 1/2) * log(t(z)) - t(z) + A(z) \\ |
|
|
|
t(z) = z + kLanczosGamma + 1/2 \\ |
|
|
|
A(z) = kBaseLanczosCoeff + \sum_{k=1}^n \frac{kLanczosCoefficients[i]}{z + k} |
|
|
|
\end{array} |
|
|
|
|
|
|
|
However, if the input is less than 0.5 use Euler's reflection formula: |
|
|
|
|
|
|
|
|