Merge pull request !3823 from chenzupeng/master-litetags/v0.7.0-beta
| @@ -1,52 +1,59 @@ | |||
| #pragma OPENCL EXTENSION cl_khr_fp16 : enable | |||
| #define FLT half | |||
| #define FLT4 half4 | |||
| #define FLT16 half16 | |||
| __kernel void conv2d_transpose2x2(__global FLT4 *inputx, __global FLT16 *weight, __global FLT4 *bias, | |||
| __global FLT4 *output, int2 kernel_size, int2 stride, int2 padding, int4 src_size, | |||
| int4 dst_size) { | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void conv2d_transpose2x2(__read_only image2d_t src_data, __global FLT16 *weight, __read_only image2d_t biases, | |||
| __write_only image2d_t dst_data, int2 kernel_size, int2 stride, int2 padding, | |||
| int4 src_size, int4 dst_size) { | |||
| int h = get_global_id(0); | |||
| int kh = h % 2; | |||
| int src_h = h / 2; | |||
| src_h = src_h * 2; | |||
| int w = get_global_id(1); | |||
| int kw = w % 2; | |||
| int src_w = w / 2; | |||
| src_w = src_w * 2; | |||
| int co = get_global_id(2); | |||
| if (h * 2 >= dst_size.x || w * 2 >= dst_size.y || co >= dst_size.z) return; | |||
| FLT4 r0 = (FLT4)(0.f); | |||
| FLT4 r1 = (FLT4)(0.f); | |||
| FLT4 r2 = (FLT4)(0.f); | |||
| FLT4 r3 = (FLT4)(0.f); | |||
| int base_x = (h * src_size.y + w) * src_size.z; | |||
| int base_w = co * src_size.z; | |||
| int base_w = (co * 4 + kh + kw * 2) * src_size.z; | |||
| for (int ci = 0; ci < src_size.z; ++ci) { | |||
| FLT4 x = inputx[base_x + ci]; | |||
| FLT16 w0 = weight[(base_w + ci) * 4]; | |||
| FLT16 w1 = weight[(base_w + ci) * 4 + 1]; | |||
| FLT16 w2 = weight[(base_w + ci) * 4 + 2]; | |||
| FLT16 w3 = weight[(base_w + ci) * 4 + 3]; | |||
| r0 += x.x * w0.s0123; | |||
| r0 += x.y * w0.s4567; | |||
| r0 += x.z * w0.s89ab; | |||
| r0 += x.w * w0.scdef; | |||
| FLT4 x0 = read_imagef(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h)); | |||
| FLT4 x1 = read_imagef(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h + 1)); | |||
| FLT4 x2 = read_imagef(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h)); | |||
| FLT4 x3 = read_imagef(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h + 1)); | |||
| FLT16 weight_cache = weight[base_w++]; | |||
| r0 += x0.x * weight_cache.s0123; | |||
| r0 += x0.y * weight_cache.s4567; | |||
| r0 += x0.z * weight_cache.s89ab; | |||
| r0 += x0.w * weight_cache.scdef; | |||
| r1 += x.x * w1.s0123; | |||
| r1 += x.y * w1.s4567; | |||
| r1 += x.z * w1.s89ab; | |||
| r1 += x.w * w1.scdef; | |||
| r1 += x1.x * weight_cache.s0123; | |||
| r1 += x1.y * weight_cache.s4567; | |||
| r1 += x1.z * weight_cache.s89ab; | |||
| r1 += x1.w * weight_cache.scdef; | |||
| r2 += x.x * w2.s0123; | |||
| r2 += x.y * w2.s4567; | |||
| r2 += x.z * w2.s89ab; | |||
| r2 += x.w * w2.scdef; | |||
| r2 += x2.x * weight_cache.s0123; | |||
| r2 += x2.y * weight_cache.s4567; | |||
| r2 += x2.z * weight_cache.s89ab; | |||
| r2 += x2.w * weight_cache.scdef; | |||
| r3 += x.x * w3.s0123; | |||
| r3 += x.y * w3.s4567; | |||
| r3 += x.z * w3.s89ab; | |||
| r3 += x.w * w3.scdef; | |||
| r3 += x3.x * weight_cache.s0123; | |||
| r3 += x3.y * weight_cache.s4567; | |||
| r3 += x3.z * weight_cache.s89ab; | |||
| r3 += x3.w * weight_cache.scdef; | |||
| } | |||
| r0 += bias[co]; | |||
| r1 += bias[co]; | |||
| r2 += bias[co]; | |||
| r3 += bias[co]; | |||
| output[((2 * h + 0) * dst_size.y + 2 * w + 0) * dst_size.z + co] = r0; | |||
| output[((2 * h + 0) * dst_size.y + 2 * w + 1) * dst_size.z + co] = r1; | |||
| output[((2 * h + 1) * dst_size.y + 2 * w + 0) * dst_size.z + co] = r2; | |||
| output[((2 * h + 1) * dst_size.y + 2 * w + 1) * dst_size.z + co] = r3; | |||
| } | |||
| FLT4 bias_val = read_imagef(biases, smp_zero, (int2)(co, 0)); | |||
| r0 += bias_val; | |||
| r1 += bias_val; | |||
| r2 += bias_val; | |||
| r3 += bias_val; | |||
| write_imagef(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh), r0); | |||
| write_imagef(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh + 2), r1); | |||
| write_imagef(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh), r2); | |||
| write_imagef(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh + 2), r3); | |||
| } | |||
| @@ -1,51 +1,59 @@ | |||
| #define FLT float | |||
| #define FLT4 float4 | |||
| #define FLT16 float16 | |||
| __kernel void conv2d_transpose2x2(__global FLT4 *inputx, __global FLT16 *weight, __global FLT4 *bias, | |||
| __global FLT4 *output, int2 kernel_size, int2 stride, int2 padding, int4 src_size, | |||
| int4 dst_size) { | |||
| __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; | |||
| __kernel void conv2d_transpose2x2(__read_only image2d_t src_data, __global FLT16 *weight, __read_only image2d_t biases, | |||
| __write_only image2d_t dst_data, int2 kernel_size, int2 stride, int2 padding, | |||
| int4 src_size, int4 dst_size) { | |||
| int h = get_global_id(0); | |||
| int kh = h % 2; | |||
| int src_h = h / 2; | |||
| src_h = src_h * 2; | |||
| int w = get_global_id(1); | |||
| int kw = w % 2; | |||
| int src_w = w / 2; | |||
| src_w = src_w * 2; | |||
| int co = get_global_id(2); | |||
| if (h * 2 >= dst_size.x || w * 2 >= dst_size.y || co >= dst_size.z) return; | |||
| FLT4 r0 = (FLT4)(0.f); | |||
| FLT4 r1 = (FLT4)(0.f); | |||
| FLT4 r2 = (FLT4)(0.f); | |||
| FLT4 r3 = (FLT4)(0.f); | |||
| int base_x = (h * src_size.y + w) * src_size.z; | |||
| int base_w = co * src_size.z; | |||
| int base_w = (co * 4 + kh + kw * 2) * src_size.z; | |||
| for (int ci = 0; ci < src_size.z; ++ci) { | |||
| FLT4 x = inputx[base_x + ci]; | |||
| FLT16 w0 = weight[(base_w + ci) * 4]; | |||
| FLT16 w1 = weight[(base_w + ci) * 4 + 1]; | |||
| FLT16 w2 = weight[(base_w + ci) * 4 + 2]; | |||
| FLT16 w3 = weight[(base_w + ci) * 4 + 3]; | |||
| r0 += x.x * w0.s0123; | |||
| r0 += x.y * w0.s4567; | |||
| r0 += x.z * w0.s89ab; | |||
| r0 += x.w * w0.scdef; | |||
| FLT4 x0 = read_imagef(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h)); | |||
| FLT4 x1 = read_imagef(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h + 1)); | |||
| FLT4 x2 = read_imagef(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h)); | |||
| FLT4 x3 = read_imagef(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h + 1)); | |||
| FLT16 weight_cache = weight[base_w++]; | |||
| r0 += x0.x * weight_cache.s0123; | |||
| r0 += x0.y * weight_cache.s4567; | |||
| r0 += x0.z * weight_cache.s89ab; | |||
| r0 += x0.w * weight_cache.scdef; | |||
| r1 += x.x * w1.s0123; | |||
| r1 += x.y * w1.s4567; | |||
| r1 += x.z * w1.s89ab; | |||
| r1 += x.w * w1.scdef; | |||
| r1 += x1.x * weight_cache.s0123; | |||
| r1 += x1.y * weight_cache.s4567; | |||
| r1 += x1.z * weight_cache.s89ab; | |||
| r1 += x1.w * weight_cache.scdef; | |||
| r2 += x.x * w2.s0123; | |||
| r2 += x.y * w2.s4567; | |||
| r2 += x.z * w2.s89ab; | |||
| r2 += x.w * w2.scdef; | |||
| r2 += x2.x * weight_cache.s0123; | |||
| r2 += x2.y * weight_cache.s4567; | |||
| r2 += x2.z * weight_cache.s89ab; | |||
| r2 += x2.w * weight_cache.scdef; | |||
| r3 += x.x * w3.s0123; | |||
| r3 += x.y * w3.s4567; | |||
| r3 += x.z * w3.s89ab; | |||
| r3 += x.w * w3.scdef; | |||
| r3 += x3.x * weight_cache.s0123; | |||
| r3 += x3.y * weight_cache.s4567; | |||
| r3 += x3.z * weight_cache.s89ab; | |||
| r3 += x3.w * weight_cache.scdef; | |||
| } | |||
| r0 += bias[co]; | |||
| r1 += bias[co]; | |||
| r2 += bias[co]; | |||
| r3 += bias[co]; | |||
| output[((2 * h + 0) * dst_size.y + 2 * w + 0) * dst_size.z + co] = r0; | |||
| output[((2 * h + 0) * dst_size.y + 2 * w + 1) * dst_size.z + co] = r1; | |||
| output[((2 * h + 1) * dst_size.y + 2 * w + 0) * dst_size.z + co] = r2; | |||
| output[((2 * h + 1) * dst_size.y + 2 * w + 1) * dst_size.z + co] = r3; | |||
| } | |||
| FLT4 bias_val = read_imagef(biases, smp_zero, (int2)(co, 0)); | |||
| r0 += bias_val; | |||
| r1 += bias_val; | |||
| r2 += bias_val; | |||
| r3 += bias_val; | |||
| write_imagef(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh), r0); | |||
| write_imagef(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh + 2), r1); | |||
| write_imagef(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh), r2); | |||
| write_imagef(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh + 2), r3); | |||
| } | |||
| @@ -64,11 +64,8 @@ int Conv2dTransposeOpenCLKernel::Init() { | |||
| auto allocator = ocl_runtime->GetAllocator(); | |||
| padWeight_ = reinterpret_cast<FLOAT_T *>(allocator->Malloc(div_ci * div_co * 16 * kh * kw * sizeof(FLOAT_T))); | |||
| padWeight_ = reinterpret_cast<FLOAT_T *>(allocator->MapBuffer(padWeight_, CL_MAP_WRITE, nullptr, true)); | |||
| bias_ = reinterpret_cast<FLOAT_T *>(allocator->Malloc(div_co * 4 * sizeof(FLOAT_T))); | |||
| bias_ = reinterpret_cast<FLOAT_T *>(allocator->MapBuffer(bias_, CL_MAP_WRITE, nullptr, true)); | |||
| PadWeight(); | |||
| allocator->UnmapBuffer(padWeight_); | |||
| allocator->UnmapBuffer(bias_); | |||
| outputs_[0]->SetFormat(schema::Format_NHWC4); | |||
| MS_LOG(DEBUG) << kernel_name << " Init Done!"; | |||
| return 0; | |||
| @@ -77,7 +74,7 @@ int Conv2dTransposeOpenCLKernel::Init() { | |||
| int Conv2dTransposeOpenCLKernel::ReSize() { return 0; } | |||
| void Conv2dTransposeOpenCLKernel::PadWeight() { | |||
| // OHWI to OIHW4(I)4(O) | |||
| // OHWI to OHWI4(I)4(O) | |||
| ConvParameter *param = reinterpret_cast<ConvParameter *>(opParameter); | |||
| int ci = param->input_channel_; | |||
| int co = param->output_channel_; | |||
| @@ -86,13 +83,11 @@ void Conv2dTransposeOpenCLKernel::PadWeight() { | |||
| int div_ci = UP_DIV(ci, 4); | |||
| int div_co = UP_DIV(co, 4); | |||
| auto origin_weight = reinterpret_cast<FLOAT_T *>(inputs_.at(kWeightIndex)->Data()); | |||
| auto origin_bias = reinterpret_cast<FLOAT_T *>(inputs_.at(kBiasIndex)->Data()); | |||
| bool has_bias = origin_bias != nullptr; | |||
| int index = 0; | |||
| for (int co_i = 0; co_i < div_co; co_i++) { | |||
| for (int ci_i = 0; ci_i < div_ci; ci_i++) { | |||
| for (int kw_i = 0; kw_i < kw; kw_i++) { | |||
| for (int kh_i = 0; kh_i < kh; kh_i++) { | |||
| for (int kw_i = 0; kw_i < kw; kw_i++) { | |||
| for (int ci_i = 0; ci_i < div_ci; ci_i++) { | |||
| for (int ci4_i = 0; ci4_i < 4; ci4_i++) { | |||
| for (int co4_i = 0; co4_i < 4; co4_i++) { | |||
| int co_offset = co_i * 4 + co4_i; | |||
| @@ -109,16 +104,6 @@ void Conv2dTransposeOpenCLKernel::PadWeight() { | |||
| } | |||
| } | |||
| } | |||
| for (int co_i = 0; co_i < div_co; co_i++) { | |||
| for (int co4_i = 0; co4_i < 4; co4_i++) { | |||
| int co_offset = co_i * 4 + co4_i; | |||
| if (has_bias && co_offset < co) { | |||
| bias_[co_offset] = origin_bias[co_offset]; | |||
| } else { | |||
| bias_[co_offset] = 0.; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| int Conv2dTransposeOpenCLKernel::Run() { | |||
| @@ -134,14 +119,31 @@ int Conv2dTransposeOpenCLKernel::Run() { | |||
| int co = param->output_channel_; | |||
| int kh = param->kernel_h_; | |||
| int kw = param->kernel_w_; | |||
| int pad = kh - 1 - param->pad_h_; | |||
| int pad = param->pad_h_; | |||
| int oh = outputs_[0]->shape()[1]; | |||
| int ow = outputs_[0]->shape()[2]; | |||
| int h = inputs_[0]->shape()[1]; | |||
| int w = inputs_[0]->shape()[2]; | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| cl::ImageFormat image_format; | |||
| { | |||
| image_format.image_channel_order = CL_RGBA; | |||
| #ifdef ENABLE_FP16 | |||
| image_format.image_channel_data_type = CL_HALF_FLOAT; | |||
| #else | |||
| image_format.image_channel_data_type = CL_FLOAT; | |||
| #endif | |||
| } | |||
| cl_int in_error_code, in_error_code_weight, in_error_code_bias, out_error_code; | |||
| cl::Image2D img_x(*ocl_runtime->Context(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, image_format, w * ci / 4, h, 0, | |||
| inputs_[0]->Data(), &in_error_code); | |||
| cl::Image2D img_bias(*ocl_runtime->Context(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, image_format, co / 4, 1, 0, | |||
| inputs_[2]->Data(), &in_error_code_bias); | |||
| cl::Image2D out_mem(*ocl_runtime->Context(), CL_MEM_WRITE_ONLY, image_format, ow * co / 4, oh, 0, nullptr, | |||
| &out_error_code); | |||
| // local size should less than MAX_GROUP_SIZE | |||
| std::vector<size_t> local = {4, 4, 32}; | |||
| std::vector<size_t> local = {16, 1, 16}; | |||
| std::vector<size_t> global = {UP_ROUND((size_t)oh / 2, local[0]), UP_ROUND((size_t)ow / 2, local[1]), | |||
| UP_ROUND((size_t)co / 4, local[2])}; | |||
| @@ -150,16 +152,19 @@ int Conv2dTransposeOpenCLKernel::Run() { | |||
| cl_int2 padding = {pad, pad}; | |||
| cl_int4 src_size = {h, w, UP_DIV(ci, 4), 1}; | |||
| cl_int4 dst_size = {oh, ow, UP_DIV(co, 4), 1}; | |||
| ocl_runtime->SetKernelArg(kernel_, 0, inputs_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, 0, img_x); | |||
| ocl_runtime->SetKernelArg(kernel_, 1, padWeight_); | |||
| ocl_runtime->SetKernelArg(kernel_, 2, bias_); | |||
| ocl_runtime->SetKernelArg(kernel_, 3, outputs_[0]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, 2, img_bias); | |||
| ocl_runtime->SetKernelArg(kernel_, 3, out_mem); | |||
| ocl_runtime->SetKernelArg(kernel_, 4, kernel_size); | |||
| ocl_runtime->SetKernelArg(kernel_, 5, stride); | |||
| ocl_runtime->SetKernelArg(kernel_, 6, padding); | |||
| ocl_runtime->SetKernelArg(kernel_, 7, src_size); | |||
| ocl_runtime->SetKernelArg(kernel_, 8, dst_size); | |||
| ocl_runtime->RunKernel(kernel_, global, local, nullptr); | |||
| auto origin = cl::array<cl::size_type, 3U>{0, 0, 0}; | |||
| auto region = cl::array<cl::size_type, 3U>{(size_t)(ow * co / 4), (size_t)(oh), 1}; | |||
| ocl_runtime->GetDefaultCommandQueue()->enqueueReadImage(out_mem, CL_TRUE, origin, region, 0, 0, outputs_[0]->Data()); | |||
| return 0; | |||
| } | |||
| @@ -180,4 +185,3 @@ kernel::LiteKernel *OpenCLConv2dTransposeKernelCreator(const std::vector<lite::t | |||
| REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_DeConv2D, OpenCLConv2dTransposeKernelCreator) | |||
| } // namespace mindspore::kernel | |||
| @@ -94,8 +94,8 @@ void MatMulOpenCLKernel::PadWeight() { | |||
| } | |||
| } | |||
| if (hasBias_) { | |||
| memcpy(inputs_[2]->Data(), bias_, sizeof(FLOAT_T) * sizeCI.s[0]); | |||
| for (int i = sizeCI.s[0]; i < sizeCI.s[1] * 4; i++) { | |||
| memcpy(bias_, inputs_[2]->Data(), sizeof(FLOAT_T) * sizeCO.s[0]); | |||
| for (int i = sizeCO.s[0]; i < sizeCO.s[1] * 4; i++) { | |||
| bias_[i] = 0; | |||
| } | |||
| } | |||
| @@ -118,7 +118,7 @@ int MatMulOpenCLKernel::Run() { | |||
| ocl_runtime->SetKernelArg(kernel_, 1, padWeight_); | |||
| ocl_runtime->SetKernelArg(kernel_, 2, outputs_[0]->Data()); | |||
| if (hasBias_) { | |||
| ocl_runtime->SetKernelArg(kernel_, 3, inputs_[2]->Data()); | |||
| ocl_runtime->SetKernelArg(kernel_, 3, bias_); | |||
| } else { | |||
| ocl_runtime->SetKernelArg(kernel_, 3, nullptr); | |||
| } | |||