| @@ -234,8 +234,6 @@ class Adam(Optimizer): | |||
| _check_param_value(beta1, beta2, eps, weight_decay, self.cls_name) | |||
| validator.check_value_type("use_locking", use_locking, [bool], self.cls_name) | |||
| validator.check_value_type("use_nesterov", use_nesterov, [bool], self.cls_name) | |||
| validator.check_value_type("loss_scale", loss_scale, [float], self.cls_name) | |||
| validator.check_number_range("loss_scale", loss_scale, 0.0, float("inf"), Rel.INC_LEFT, self.cls_name) | |||
| self.beta1 = Tensor(beta1, mstype.float32) | |||
| self.beta2 = Tensor(beta2, mstype.float32) | |||
| @@ -247,9 +245,8 @@ class Adam(Optimizer): | |||
| self.moment2 = self.parameters.clone(prefix="moment2", init='zeros') | |||
| self.hyper_map = C.HyperMap() | |||
| self.map_ = C.Map() | |||
| self.opt = P.Adam(use_locking, use_nesterov) | |||
| self.sparse_opt = P.SparseApplyAdam() | |||
| self.sparse_opt = P.SparseApplyAdam(use_locking, use_nesterov) | |||
| def construct(self, gradients): | |||
| params = self.parameters | |||
| @@ -41,15 +41,11 @@ def _tensor_run_opt(opt, spars_opt, learning_rate, l1, l2, lr_power, linear, gra | |||
| return success | |||
| def _check_param(initial_accum, learning_rate, lr_power, l1, l2, use_locking, loss_scale=1.0, weight_decay=0.0, | |||
| prim_name=None): | |||
| def _check_param(initial_accum, lr_power, l1, l2, use_locking, weight_decay=0.0, prim_name=None): | |||
| """Check param.""" | |||
| validator.check_value_type("initial_accum", initial_accum, [float], prim_name) | |||
| validator.check_number("initial_accum", initial_accum, 0.0, Rel.GE, prim_name) | |||
| validator.check_value_type("learning_rate", learning_rate, [float], prim_name) | |||
| validator.check_number("learning_rate", learning_rate, 0.0, Rel.GT, prim_name) | |||
| validator.check_value_type("lr_power", lr_power, [float], prim_name) | |||
| validator.check_number("lr_power", lr_power, 0.0, Rel.LE, prim_name) | |||
| @@ -61,9 +57,6 @@ def _check_param(initial_accum, learning_rate, lr_power, l1, l2, use_locking, lo | |||
| validator.check_value_type("use_locking", use_locking, [bool], prim_name) | |||
| validator.check_value_type("loss_scale", loss_scale, [float], prim_name) | |||
| validator.check_number("loss_scale", loss_scale, 1.0, Rel.GE, prim_name) | |||
| validator.check_value_type("weight_decay", weight_decay, [float], prim_name) | |||
| validator.check_number("weight_decay", weight_decay, 0.0, Rel.GE, prim_name) | |||
| @@ -110,21 +103,18 @@ class FTRL(Optimizer): | |||
| """ | |||
| def __init__(self, params, initial_accum=0.1, learning_rate=0.001, lr_power=-0.5, l1=0.0, l2=0.0, | |||
| use_locking=False, loss_scale=1.0, weight_decay=0.0): | |||
| super(FTRL, self).__init__(learning_rate, params) | |||
| super(FTRL, self).__init__(learning_rate, params, loss_scale=loss_scale) | |||
| if self.is_group: | |||
| raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.") | |||
| _check_param(initial_accum, learning_rate, lr_power, l1, l2, use_locking, loss_scale, weight_decay, | |||
| self.cls_name) | |||
| _check_param(initial_accum, lr_power, l1, l2, use_locking, weight_decay, self.cls_name) | |||
| self.moments = self.parameters.clone(prefix="moments", init=initial_accum) | |||
| self.linear = self.parameters.clone(prefix="linear", init='zeros') | |||
| self.l1 = l1 | |||
| self.l2 = l2 | |||
| self.lr_power = lr_power | |||
| self.reciprocal_scale = 1.0 / loss_scale | |||
| self.weight_decay = weight_decay | |||
| self.decay_tf = tuple((lambda: True)() for x in self.parameters) | |||
| self.hyper_map = C.HyperMap() | |||
| self.map_ = C.Map() | |||
| self.opt = P.ApplyFtrl(use_locking=use_locking) | |||
| self.sparse_opt = P.SparseApplyFtrl(learning_rate, l1, l2, lr_power, use_locking=use_locking) | |||
| @@ -132,11 +122,11 @@ class FTRL(Optimizer): | |||
| params = self.parameters | |||
| moments = self.moments | |||
| linear = self.linear | |||
| lr = self.learning_rate | |||
| if self.weight_decay > 0.0: | |||
| grads = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_tf, params, grads) | |||
| if self.reciprocal_scale != 1.0: | |||
| grads = self.hyper_map(F.partial(grad_scale, self.reciprocal_scale), grads) | |||
| lr = self.learning_rate | |||
| grads = self.scale_grad(grads) | |||
| success = self.map_(F.partial(ftrl_opt, self.opt, self.sparse_opt, lr, self.l1, self.l2, self.lr_power), | |||
| linear, grads, params, moments) | |||
| return success | |||
| @@ -164,8 +164,6 @@ class LazyAdam(Optimizer): | |||
| _check_param_value(beta1, beta2, eps, weight_decay, self.cls_name) | |||
| validator.check_value_type("use_locking", use_locking, [bool], self.cls_name) | |||
| validator.check_value_type("use_nesterov", use_nesterov, [bool], self.cls_name) | |||
| validator.check_value_type("loss_scale", loss_scale, [float], self.cls_name) | |||
| validator.check_number_range("loss_scale", loss_scale, 1.0, float("inf"), Rel.INC_LEFT, self.cls_name) | |||
| self.beta1 = Tensor(beta1, mstype.float32) | |||
| self.beta2 = Tensor(beta2, mstype.float32) | |||
| @@ -179,7 +177,6 @@ class LazyAdam(Optimizer): | |||
| self.moment2 = self.parameters.clone(prefix="moment2", init='zeros') | |||
| self.hyper_map = C.HyperMap() | |||
| self.map_ = C.Map() | |||
| self.opt = P.Adam(use_locking, use_nesterov) | |||
| self.sparse_opt = P.SparseApplyLazyAdam(use_locking, use_nesterov) | |||
| @@ -153,6 +153,7 @@ class Optimizer(Cell): | |||
| self.reciprocal_scale = 1.0 / loss_scale | |||
| self.exec_weight_decay = any(self.decay_flags) | |||
| self.param_length = len(self.parameters) | |||
| self.map_ = C.Map() | |||
| def decay_weight(self, gradients): | |||
| """ | |||
| @@ -195,7 +196,7 @@ class Optimizer(Cell): | |||
| """ | |||
| if self.reciprocal_scale != 1.0: | |||
| gradients = self.hyper_map(F.partial(grad_scale, self.reciprocal_scale), gradients) | |||
| gradients = self.map_(F.partial(grad_scale, self.reciprocal_scale), gradients) | |||
| return gradients | |||
| @@ -409,3 +410,11 @@ def tensor_grad_scale(scale, grad): | |||
| if scale == 1.0: | |||
| return grad | |||
| return grad * scale | |||
| @grad_scale.register("Number", "Tuple") | |||
| def tensor_grad_scale_with_sparse(scale, grad): | |||
| """Get grad with scale.""" | |||
| if scale == 1.0: | |||
| return grad | |||
| return grad[0], grad[1] * scale, grad[2] | |||
| @@ -18,7 +18,6 @@ import pytest | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor, Parameter | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.common.api import _executor | |||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||
| from mindspore.nn.optim import Adam, AdamWeightDecay, AdamWeightDecayDynamicLR | |||
| @@ -100,14 +99,14 @@ def test_adam_compile(): | |||
| _executor.compile(train_network, inputs, label) | |||
| def test_spares_adam_compile(): | |||
| def test_sparse_adam_compile(): | |||
| """ test_sparse_adam_compile """ | |||
| indices = Tensor(np.array([0, 1]).astype(np.int32)) | |||
| label = Tensor(np.zeros([2, 1, 2]).astype(np.float32)) | |||
| net = NetWithSparseGatherV2() | |||
| net.set_train() | |||
| optimizer = Adam(net.trainable_params(), learning_rate=0.1) | |||
| optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0) | |||
| train_network = TrainOneStepCell(net, optimizer) | |||
| _executor.compile(train_network, indices, label) | |||
| @@ -149,34 +148,3 @@ def test_adam_mindspore_with_empty_params(): | |||
| net = nn.Flatten() | |||
| with pytest.raises(ValueError, match=r"Optimizer got an empty parameter list"): | |||
| AdamWeightDecay(net.get_parameters()) | |||
| class TestSparseOps(nn.Cell): | |||
| """Define sparse operator""" | |||
| def __init__(self, sparse_opt): | |||
| super(TestSparseOps, self).__init__() | |||
| self.sparse_apply_adam = sparse_opt | |||
| self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var") | |||
| self.m = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="m") | |||
| self.v = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="v") | |||
| def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices): | |||
| out = self.sparse_apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, | |||
| grad, indices) | |||
| return out | |||
| def test_sparse_adam(): | |||
| """test sparse operator""" | |||
| gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32)) | |||
| indices = Tensor([0, 1, 2], mstype.int32) | |||
| net = TestSparseOps(P.SparseApplyAdam()) | |||
| _executor.compile(net, 0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient, indices) | |||
| def test_sparse_lazy_adam(): | |||
| """test sparse operator""" | |||
| gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32)) | |||
| indices = Tensor([0, 1, 2], mstype.int32) | |||
| net = TestSparseOps(P.SparseApplyLazyAdam()) | |||
| _executor.compile(net, 0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient, indices) | |||
| @@ -57,7 +57,7 @@ def test_ftrl(): | |||
| net = Net() | |||
| net.set_train() | |||
| loss = nn.SoftmaxCrossEntropyWithLogits() | |||
| optimizer = FTRL(net.trainable_params()) | |||
| optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0) | |||
| net_with_loss = WithLossCell(net, loss) | |||
| train_network = TrainOneStepCell(net_with_loss, optimizer) | |||
| _executor.compile(train_network, inputs, label) | |||
| @@ -70,6 +70,6 @@ def test_spares_ftrl_compile(): | |||
| net = NetWithSparseGatherV2() | |||
| net.set_train() | |||
| optimizer = FTRL(net.trainable_params()) | |||
| optimizer = FTRL(net.trainable_params(), loss_scale=2.0) | |||
| train_network = TrainOneStepCell(net, optimizer) | |||
| _executor.compile(train_network, indices, label) | |||
| @@ -60,7 +60,7 @@ def test_lazy_adam_compile(): | |||
| net.set_train() | |||
| loss = nn.SoftmaxCrossEntropyWithLogits() | |||
| optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9) | |||
| optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0) | |||
| net_with_loss = WithLossCell(net, loss) | |||
| train_network = TrainOneStepCell(net_with_loss, optimizer) | |||
| @@ -74,7 +74,7 @@ def test_spares_lazy_adam_compile(): | |||
| net = NetWithSparseGatherV2() | |||
| net.set_train() | |||
| optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1) | |||
| optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, loss_scale=2.0) | |||
| train_network = TrainOneStepCell(net, optimizer) | |||
| _executor.compile(train_network, indices, label) | |||