diff --git a/mindspore/train/callback/_time_monitor.py b/mindspore/train/callback/_time_monitor.py index 9fbdf83aa8..f5a5815041 100644 --- a/mindspore/train/callback/_time_monitor.py +++ b/mindspore/train/callback/_time_monitor.py @@ -16,13 +16,19 @@ import time +from mindspore import log as logger from ._callback import Callback class TimeMonitor(Callback): - """Time Monitor.""" + """ + Monitor the time in training. - def __init__(self, data_size): + Args: + data_size (int): Dataset size. Default: None. + """ + + def __init__(self, data_size=None): super(TimeMonitor, self).__init__() self.data_size = data_size @@ -30,6 +36,17 @@ class TimeMonitor(Callback): self.epoch_time = time.time() def epoch_end(self, run_context): - epoch_mseconds = (time.time() - self.epoch_time) * 1000 - per_step_mseconds = epoch_mseconds / self.data_size - print("Epoch time: {:5.3f}, per step time: {:5.3f}".format(epoch_mseconds, per_step_mseconds), flush=True) + epoch_seconds = (time.time() - self.epoch_time) * 1000 + step_size = self.data_size + cb_params = run_context.original_args() + if hasattr(cb_params, "batch_num"): + batch_num = cb_params.batch_num + if isinstance(batch_num, int) and batch_num > 0: + step_size = cb_params.batch_num + + if not isinstance(step_size, int) or step_size < 1: + logger.error("data_size must be positive int.") + return + + step_seconds = epoch_seconds / step_size + print("Epoch time: {:5.3f}, per step time: {:5.3f}".format(epoch_seconds, step_seconds), flush=True)