Merge pull request !7437 from yao_yf/auto_parallel_support_dynamic_shapetags/v1.1.0
| @@ -808,6 +808,61 @@ double LayerNormCost::GetForwardComputationCost(const std::vector<TensorInfo> &i | |||
| return result; | |||
| } | |||
| double UniqueCost::GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int32_t stage_id) const { | |||
| return 0.0; | |||
| } | |||
| double UniqueCost::GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int32_t stage_id) const { | |||
| double result = 0.0; | |||
| if (is_parameter_[0]) { | |||
| TensorInfo input = inputs[0]; | |||
| CheckGlobalDeviceManager(); | |||
| MS_EXCEPTION_IF_NULL(g_device_manager); | |||
| auto total_device_num = g_device_manager->GetDeviceListByStageId(stage_id).size(); | |||
| Shape input_shape = input.shape(); | |||
| Shape input_slice_shape = input.slice_shape(); | |||
| int32_t used_device_num = 1; | |||
| for (size_t i = 0; i < input_shape.size(); ++i) { | |||
| used_device_num *= input_shape[i] / input_slice_shape[i]; | |||
| } | |||
| if (total_device_num != IntToSize(used_device_num)) { | |||
| result = ListProduct(input_slice_shape) * static_cast<double>(inputs_type_lengths_[0]); | |||
| } | |||
| } | |||
| return result; | |||
| } | |||
| double UniqueCost::GetForwardComputationCost(const std::vector<TensorInfo> &inputs, | |||
| const std::vector<TensorInfo> &outputs, int32_t stage_id) const { | |||
| // In forward phase, the computation cost = slice(A) + slice(B) | |||
| Shape input_slice_shape = inputs[0].slice_shape(); | |||
| double result = ListProduct(input_slice_shape) * static_cast<double>(inputs_type_lengths_[0]); | |||
| return result; | |||
| } | |||
| double UniqueCost::GetBackwardComputationCost(const std::vector<TensorInfo> &inputs, | |||
| const std::vector<TensorInfo> &outputs, int32_t stage_id) const { | |||
| // In backward phase, the computation cost = (0 or 1) allreduce(slice(B)) | |||
| double result = 0.0; | |||
| if (is_parameter_[0]) { | |||
| TensorInfo input = inputs[0]; // tensor B | |||
| CheckGlobalDeviceManager(); | |||
| MS_EXCEPTION_IF_NULL(g_device_manager); | |||
| auto total_device_num = g_device_manager->GetDeviceListByStageId(stage_id).size(); | |||
| Shape input_shape = input.shape(); | |||
| Shape input_slice_shape = input.slice_shape(); | |||
| int32_t used_device_num = 1; | |||
| for (size_t i = 0; i < input_shape.size(); ++i) { | |||
| used_device_num *= input_shape[i] / input_slice_shape[i]; | |||
| } | |||
| if (total_device_num != IntToSize(used_device_num)) { | |||
| result += ListProduct(input_slice_shape) * static_cast<double>(inputs_type_lengths_[0]); | |||
| } | |||
| } | |||
| return result; | |||
| } | |||
| double GatherV2PCost::GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int32_t stage_id) const { | |||
| double result = 0.0; | |||
| @@ -606,6 +606,32 @@ class LayerNormCost : public OperatorCost { | |||
| using DropOutCostPtr = std::shared_ptr<DropOutCost>; | |||
| class UniqueCost : public OperatorCost { | |||
| public: | |||
| explicit UniqueCost(bool is_inputs_related) : OperatorCost(is_inputs_related) {} | |||
| UniqueCost() : OperatorCost(true) {} | |||
| ~UniqueCost() override = default; | |||
| double GetCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int32_t stage_id) const override { | |||
| return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id); | |||
| } | |||
| double GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int32_t stage_id) const override; | |||
| double GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int32_t stage_id) const override; | |||
| double GetComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int32_t stage_id) const override { | |||
| return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id); | |||
| } | |||
| double GetForwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int32_t stage_id) const override; | |||
| double GetBackwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, | |||
| int32_t) const override; | |||
| }; | |||
| using UniqueCostPtr = std::shared_ptr<UniqueCost>; | |||
| class GatherV2Cost : public OperatorCost { | |||
| public: | |||
| explicit GatherV2Cost(bool is_inputs_related) : OperatorCost(is_inputs_related) {} | |||
| @@ -182,6 +182,7 @@ REGISTER(DropoutInfo); | |||
| REGISTER(PackInfo); | |||
| REGISTER(ConcatInfo); | |||
| REGISTER(SplitInfo); | |||
| REGISTER(UniqueInfo); | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -151,6 +151,10 @@ Status GatherV2PInfo::GetAttrs() { | |||
| MS_LOG(ERROR) << name_ << ": The axis or offset must be 0 if manual split, bug got " << axis_; | |||
| return FAILED; | |||
| } | |||
| if (std::find(inputs_shape_[1].begin(), inputs_shape_[1].end(), -1) != inputs_shape_[1].end()) { | |||
| dynamic_shape_indices_ = true; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| @@ -240,7 +244,7 @@ Status GatherV2PInfo::CheckStrategy(const StrategyPtr &strategy) { | |||
| // axis=0, index_shape(0)%param_strategy(0) must be 0 | |||
| Shape index_shape = inputs_shape_.at(1); | |||
| if ((axis_ == 0) && (index_shape.at(0) % param_strategy.at(0) != 0)) { | |||
| if ((axis_ == 0) && (index_shape.at(0) % param_strategy.at(0) != 0) && !dynamic_shape_indices_) { | |||
| MS_LOG(DEBUG) << name_ << ": index_shape(0) can't be divided by param_strategy(0)."; | |||
| return FAILED; | |||
| } | |||
| @@ -357,13 +361,7 @@ Status GatherV2PInfo::InferDevMatrixShape() { | |||
| return SUCCESS; | |||
| } | |||
| Status GatherV2PInfo::InferTensorMap() { | |||
| if (manual_split_) { | |||
| inputs_tensor_map_.push_back({1, 0}); | |||
| inputs_tensor_map_.push_back({-1, 1}); | |||
| outputs_tensor_map_.push_back({-1, 1, 0}); | |||
| return SUCCESS; | |||
| } | |||
| void GatherV2PInfo::InferInputsTensorMap() { | |||
| // infer input tensor map | |||
| // param_strategy(axis) != 1 | |||
| size_t param_size = inputs_shape_.at(0).size(); | |||
| @@ -373,7 +371,7 @@ Status GatherV2PInfo::InferTensorMap() { | |||
| Shape tensor_map_params; | |||
| auto param_strategy = strategy_->GetInputDim().at(0); | |||
| if (param_strategy.at(IntToSize(axis_)) != 1) { | |||
| tensor_map_index.insert(tensor_map_index.begin(), index_size, -1); | |||
| tensor_map_index.insert(tensor_map_index.begin(), index_size, MAP_NONE); | |||
| for (size_t i = 0; i < param_size; ++i) { | |||
| tensor_map_params.push_back(SizeToInt(i)); | |||
| } | |||
| @@ -386,9 +384,17 @@ Status GatherV2PInfo::InferTensorMap() { | |||
| tensor_map_index.push_back(SizeToInt(index_size - i - 1)); | |||
| } | |||
| } | |||
| inputs_tensor_map_.emplace_back(std::move(tensor_map_params)); | |||
| inputs_tensor_map_.emplace_back(std::move(tensor_map_index)); | |||
| } | |||
| void GatherV2PInfo::InferOutputsTensorMap() { | |||
| // infer output tensor map | |||
| size_t param_size = inputs_shape_.at(0).size(); | |||
| size_t index_size = inputs_shape_.at(1).size(); | |||
| size_t total_size = param_size + index_size; | |||
| Shape tensor_map_out; | |||
| auto param_strategy = strategy_->GetInputDim().at(0); | |||
| if (param_strategy.at(IntToSize(axis_)) == 1) { | |||
| // param_strategy(axis) == 1 | |||
| for (size_t i = 0; i < param_size; ++i) { | |||
| @@ -403,25 +409,40 @@ Status GatherV2PInfo::InferTensorMap() { | |||
| } else { | |||
| // param_strategy(axis) != 1 | |||
| if (axis_ == 0) { | |||
| tensor_map_out.insert(tensor_map_out.end(), 0); | |||
| tensor_map_out.insert(tensor_map_out.end(), index_size - 1, -1); | |||
| if (dynamic_shape_indices_) { | |||
| tensor_map_out.insert(tensor_map_out.end(), MAP_NONE); | |||
| } else { | |||
| tensor_map_out.insert(tensor_map_out.end(), 0); | |||
| } | |||
| tensor_map_out.insert(tensor_map_out.end(), index_size - 1, MAP_NONE); | |||
| for (size_t i = 1; i < param_size; ++i) { | |||
| tensor_map_out.push_back(i); | |||
| } | |||
| } else { | |||
| for (size_t i = 0; i < param_size; ++i) { | |||
| if (i == IntToSize(axis_)) { | |||
| tensor_map_out.insert(tensor_map_out.end(), index_size, -1); | |||
| tensor_map_out.insert(tensor_map_out.end(), index_size, MAP_NONE); | |||
| } else { | |||
| if (i == 0 && dynamic_shape_indices_) { | |||
| tensor_map_out.push_back(MAP_NONE); | |||
| } | |||
| tensor_map_out.push_back(SizeToInt(param_size - i - 1)); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| inputs_tensor_map_.emplace_back(std::move(tensor_map_params)); | |||
| inputs_tensor_map_.emplace_back(std::move(tensor_map_index)); | |||
| outputs_tensor_map_.emplace_back(std::move(tensor_map_out)); | |||
| } | |||
| Status GatherV2PInfo::InferTensorMap() { | |||
| if (manual_split_) { | |||
| inputs_tensor_map_.push_back({1, 0}); | |||
| inputs_tensor_map_.push_back({-1, 1}); | |||
| outputs_tensor_map_.push_back({-1, 1, 0}); | |||
| return SUCCESS; | |||
| } | |||
| InferInputsTensorMap(); | |||
| InferOutputsTensorMap(); | |||
| return SUCCESS; | |||
| } | |||
| @@ -57,6 +57,8 @@ class GatherV2PInfo : public OperatorInfo { | |||
| Status InferTensorInfo() override; | |||
| Status InferDevMatrixShape() override; | |||
| Status InferTensorMap() override; | |||
| void InferInputsTensorMap(); | |||
| void InferOutputsTensorMap(); | |||
| Status GetAttrs() override; | |||
| Status ComputeReplaceGraph(const CNodePtr &cnode); | |||
| @@ -77,6 +79,7 @@ class GatherV2PInfo : public OperatorInfo { | |||
| Shape out_dev_matrix_shape_; | |||
| Group group_; | |||
| bool manual_split_ = false; | |||
| bool dynamic_shape_indices_ = false; | |||
| std::vector<int64_t> param_split_shapes_; | |||
| std::vector<int64_t> index_offsets_; | |||
| }; | |||
| @@ -43,5 +43,6 @@ | |||
| #include "frontend/parallel/ops_info/split_info.h" | |||
| #include "frontend/parallel/ops_info/pack_info.h" | |||
| #include "frontend/parallel/ops_info/broadcast_to_info.h" | |||
| #include "frontend/parallel/ops_info/unique_info.h" | |||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_ | |||
| @@ -48,6 +48,9 @@ constexpr size_t DROPOUT_DO_MASK_KEEP_PROB_INDEX = 3; | |||
| constexpr size_t SoftmaxCrossEntropyWithLogitsAttrSize = 1; | |||
| constexpr size_t SoftmaxCrossEntropyWithLogitsInputsSize = 2; | |||
| constexpr size_t SoftmaxCrossEntropyWithLogitsOutputsSize = 2; | |||
| constexpr size_t UNIQUE_INPUTS_SIZE = 1; | |||
| constexpr size_t UNIQUE_INPUT_SIZE = 1; | |||
| constexpr size_t UNIQUE_OUTPUTS_SIZE = 2; | |||
| constexpr double EPS = 1e-6; | |||
| constexpr double INF = 1e20; | |||
| @@ -285,6 +288,7 @@ constexpr char DEPTHWISE_CONV2D[] = "DepthwiseConv2D"; | |||
| constexpr char ADD[] = "Add"; | |||
| constexpr char DROPOUT[] = "Dropout"; | |||
| constexpr char KStridedSlice[] = "StridedSlice"; | |||
| constexpr char UNIQUE[] = "Unique"; | |||
| // Parallel don't care | |||
| constexpr char TUPLE_GETITEM[] = "tuple_getitem"; | |||
| @@ -0,0 +1,192 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "frontend/parallel/ops_info/unique_info.h" | |||
| #include <algorithm> | |||
| #include <memory> | |||
| #include <utility> | |||
| #include <vector> | |||
| #include "ir/value.h" | |||
| #include "frontend/parallel/device_matrix.h" | |||
| #include "frontend/parallel/strategy.h" | |||
| #include "frontend/parallel/context.h" | |||
| #include "frontend/parallel/tensor_layout/tensor_redistribution.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| /* | |||
| * unique has one input, two outputs. Currently, unique cannot be split. | |||
| */ | |||
| Status UniqueInfo::InferTensorMap() { | |||
| MS_EXCEPTION_IF_NULL(ParallelContext::GetInstance()); | |||
| for (auto shp : inputs_shape_) { | |||
| TensorMap out_tensor_map; | |||
| TensorMap in_tensor_map; | |||
| for (size_t i = 0; i < shp.size(); ++i) { | |||
| in_tensor_map.push_back(MAP_NONE); | |||
| out_tensor_map.push_back(MAP_NONE); | |||
| } | |||
| inputs_tensor_map_.push_back(in_tensor_map); | |||
| outputs_tensor_map_.push_back(out_tensor_map); | |||
| outputs_tensor_map_.push_back(out_tensor_map); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UniqueInfo::InferTensorLayout(TensorLayouts *inputs_layout, TensorLayouts *outputs_layout) { | |||
| if (inputs_layout == nullptr || outputs_layout == nullptr) { | |||
| MS_LOG(ERROR) << name_ << " : The layout is null."; | |||
| return FAILED; | |||
| } | |||
| TensorLayout input_layout; | |||
| TensorLayout output_layout; | |||
| TensorLayout index_layout; | |||
| if ((input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) || | |||
| (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) || | |||
| (index_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[1], outputs_shape_[1]) != SUCCESS)) { | |||
| return FAILED; | |||
| } | |||
| inputs_layout->push_back(input_layout); | |||
| outputs_layout->push_back(output_layout); | |||
| outputs_layout->push_back(index_layout); | |||
| return SUCCESS; | |||
| } | |||
| Status UniqueInfo::InferTensorInfo() { | |||
| TensorLayouts inputs_layout; | |||
| TensorLayouts outputs_layout; | |||
| if (InferTensorLayout(&inputs_layout, &outputs_layout) != SUCCESS) { | |||
| return FAILED; | |||
| } | |||
| for (size_t i = 0; i < inputs_layout.size(); ++i) { | |||
| TensorInfo input_tensor_info(inputs_layout[i]); | |||
| inputs_tensor_info_.push_back(input_tensor_info); | |||
| } | |||
| for (size_t i = 0; i < outputs_layout.size(); ++i) { | |||
| TensorInfo output_tensor_info(outputs_layout[i]); | |||
| outputs_tensor_info_.push_back(output_tensor_info); | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UniqueInfo::InferDevMatrixShape() { | |||
| dev_matrix_shape_.push_back(dev_num_); | |||
| return SUCCESS; | |||
| } | |||
| Status UniqueInfo::Init(const StrategyPtr &strategy) { | |||
| if (InitWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << " : Init failed"; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << name_ << " : Init success"; | |||
| return SUCCESS; | |||
| } | |||
| Status UniqueInfo::CheckStrategy(const StrategyPtr &strategy) { | |||
| Strategys stras = strategy->GetInputDim(); | |||
| if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Invalid strategy."; | |||
| return FAILED; | |||
| } | |||
| for (Dimensions stra : stras) { | |||
| if (stra.size() != UNIQUE_INPUT_SIZE) { | |||
| MS_LOG(ERROR) << name_ << " : Invalid strategy."; | |||
| return FAILED; | |||
| } | |||
| } | |||
| int32_t stage = strategy->GetInputStage(); | |||
| int32_t dev_num = SizeToInt(g_device_manager->GetDeviceListByStageId(stage).size()); | |||
| dev_num_ = dev_num; | |||
| if (stras[0][0] != 1) { | |||
| MS_LOG(ERROR) << "Currently, unique only support repeat calculate in all devices"; | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UniqueInfo::GetAttrs() { | |||
| if ((inputs_shape_.size() != UNIQUE_INPUTS_SIZE) || (outputs_shape_.size() != UNIQUE_OUTPUTS_SIZE)) { | |||
| MS_LOG(ERROR) << name_ << ": Inputs shape size " << inputs_shape_.size() << " or outputs shape size " | |||
| << outputs_shape_.size() << " is wrong."; | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UniqueInfo::InferMirrorOps() { | |||
| mirror_ops_.clear(); | |||
| Shape tensor_map = inputs_tensor_map_[0]; | |||
| std::vector<Group> group; | |||
| if (CreateGroupByTensorMap(tensor_map, &group) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << " : Create group failed."; | |||
| return FAILED; | |||
| } | |||
| OperatorVector mirror_op; | |||
| if (group.empty()) { | |||
| MS_LOG(INFO) << name_ << " : The mirror ops is empty."; | |||
| return SUCCESS; | |||
| } else { | |||
| mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum()); | |||
| mirror_ops_.push_back(mirror_op); | |||
| std::string group_name = group[0].name(); | |||
| MS_LOG(INFO) << name_ << " : Create the mirror ops success, the group name is " << group_name; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status UniqueInfo::InitForCostModel(const StrategyPtr &strategy) { | |||
| if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << " : Init for cost model failed."; | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << name_ << " : Init for cost model success."; | |||
| return SUCCESS; | |||
| } | |||
| Status UniqueInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); } | |||
| Status UniqueInfo::GenerateStrategies(int32_t stage_id) { | |||
| if (inputs_shape_.size() != UNIQUE_INPUTS_SIZE) { | |||
| return FAILED; | |||
| } | |||
| if (inputs_shape_[0].size() != UNIQUE_INPUT_SIZE) { | |||
| return FAILED; | |||
| } | |||
| Shape input0_split; | |||
| input0_split.emplace_back(0); | |||
| Shapes splittable_inputs = {input0_split}; | |||
| std::vector<StrategyPtr> sp_vector; | |||
| if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": GenerateStrategiesForIndependentInputs failed"; | |||
| return FAILED; | |||
| } | |||
| size_t success = 0; | |||
| for (auto &sp : sp_vector) { | |||
| if (SetCostUnderStrategy(sp) == SUCCESS) { | |||
| success++; | |||
| MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy."; | |||
| PrintStrategy(sp); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,60 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNIQUE_INFO_H_ | |||
| #define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNIQUE_INFO_H_ | |||
| #include <memory> | |||
| #include <string> | |||
| #include <unordered_map> | |||
| #include <vector> | |||
| #include "frontend/parallel/auto_parallel/operator_costmodel.h" | |||
| #include "frontend/parallel/ops_info/operator_info.h" | |||
| #include "frontend/parallel/strategy.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| class UniqueInfo : public OperatorInfo { | |||
| public: | |||
| UniqueInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape, | |||
| const PrimitiveAttrs &attrs) | |||
| : OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<GetNextCost>(false)) {} | |||
| ~UniqueInfo() override = default; | |||
| Status Init(const StrategyPtr &strategy) override; | |||
| Status SetCostUnderStrategy(const StrategyPtr &strategy) override; | |||
| Status InitForCostModel(const StrategyPtr &strategy) override; | |||
| Status GenerateStrategies(int32_t stage_id) override; | |||
| protected: | |||
| Status CheckStrategy(const StrategyPtr &strategy) override; | |||
| Status GetAttrs() override; | |||
| Status InferTensorMap() override; | |||
| Status InferTensorLayout(TensorLayouts *inputs_layout, TensorLayouts *outputs_layout); | |||
| Status InferTensorInfo() override; | |||
| Status InferDevMatrixShape() override; | |||
| Status InferMirrorOps() override; | |||
| Status InferForwardCommunication() override { return SUCCESS; } | |||
| Status InferAsLossDivisor() override { return SUCCESS; } | |||
| private: | |||
| int32_t dev_num_ = 1; | |||
| }; | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNIQUE_INFO_H_ | |||
| @@ -312,7 +312,7 @@ bool IsSplittableOperator(const std::string &op_name) { | |||
| EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT, BROADCAST_TO, ABS, ACOSH, ASIN, ASINH, ATAN, ATANH, CEIL, COSH, | |||
| EXPM1, LOG1P, SIN, SINH, TAN, RSQRT, INV, RECIPROCAL, ROUND, FLOOR, SIGN, ERF, ERFC, ZEROSLIKE, ONESLIKE, | |||
| BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2, | |||
| SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD}; | |||
| SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE}; | |||
| // clang-format on | |||
| auto iter = splittable_op.find(op_name); | |||
| @@ -39,7 +39,7 @@ Status Arrangement::Init(const Shape &array) { | |||
| } | |||
| bool Arrangement::IsValidArrangement() { | |||
| return !std::any_of(array_.begin(), array_.end(), [](int64_t value) { return value <= 0; }); | |||
| return !std::any_of(array_.begin(), array_.end(), [](int64_t value) { return value <= 0 && value != -1; }); | |||
| } | |||
| void Arrangement::ComputeSize() { | |||
| @@ -21,7 +21,19 @@ | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| Status RedistributionLayoutTransfer::CheckValidTransfer() { return Status::SUCCESS; } | |||
| Status RedistributionLayoutTransfer::CheckValidTransfer() { | |||
| Shape from_shape = from_in_.tensor_shape().array(); | |||
| if (std::find(from_shape.begin(), from_shape.end(), -1) != from_shape.end()) { | |||
| is_dynamic_shape_ = true; | |||
| if (from_in_ != to_in_) { | |||
| MS_LOG(ERROR) << "In dynamic shape scene, the from_tensor_shape should be equal to to_tensor_shape"; | |||
| MS_LOG(ERROR) << "from_in layout" << from_in_.ToString(); | |||
| MS_LOG(ERROR) << "to_in layout" << to_in_.ToString(); | |||
| return Status::FAILED; | |||
| } | |||
| } | |||
| return Status::SUCCESS; | |||
| } | |||
| /* | |||
| * unify device arrangement between in_layout and out_layout | |||
| @@ -29,10 +29,12 @@ class RedistributionLayoutTransfer : public LayoutTransfer { | |||
| RedistributionLayoutTransfer() = default; | |||
| ~RedistributionLayoutTransfer() override = default; | |||
| std::shared_ptr<ReshapeLayoutTransfer> UnifyDeviceArrangementAndTensorShape() const; | |||
| bool IsDynamicShape() const { return is_dynamic_shape_; } | |||
| private: | |||
| Status CheckValidTransfer() override; | |||
| std::shared_ptr<ReshapeLayoutTransfer> UnifyDeviceArrangement() const; | |||
| bool is_dynamic_shape_ = false; | |||
| }; | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -357,6 +357,10 @@ bool TensorLayout::operator==(const TensorLayout &t1) const { | |||
| return (IsSameDeviceArrangement(t1) && IsSameTensorMap(t1) && IsSameTensorShape(t1)); | |||
| } | |||
| bool TensorLayout::operator!=(const TensorLayout &t1) const { | |||
| return !(IsSameDeviceArrangement(t1) && IsSameTensorMap(t1) && IsSameTensorShape(t1)); | |||
| } | |||
| /* | |||
| * remove elements equal to 1 in tensor_shape, if all elements are 1, squeeze the tensor_shape to [ 1 ] | |||
| * example 1: | |||
| @@ -82,6 +82,8 @@ class TensorLayout { | |||
| bool operator==(const TensorLayout &t1) const; | |||
| bool operator!=(const TensorLayout &t1) const; | |||
| bool TensorShapeCanBeExpanded(const Arrangement &expanded_shape) const; | |||
| std::shared_ptr<Arrangement> ComputeExpandedTensorShape(const Arrangement &expand_shape) const; | |||
| @@ -82,17 +82,24 @@ RedistributionOpListPtr TensorRedistribution::InferTensorRedistributionOperatorL | |||
| if (status != Status::SUCCESS) { | |||
| return nullptr; | |||
| } | |||
| std::shared_ptr<ReshapeLayoutTransfer> ptr = layout_transfer.UnifyDeviceArrangementAndTensorShape(); | |||
| if (ptr == nullptr) { | |||
| MS_LOG(ERROR) << "Infer tensor layout return nullptr!"; | |||
| return nullptr; | |||
| } | |||
| if (!ptr->ExpandAble()) { | |||
| expand_able_ = false; | |||
| return InferTensorRedistributionOperatorListUnExpand(is_cost_model); | |||
| TensorLayout from_layout; | |||
| TensorLayout to_layout; | |||
| if (layout_transfer.IsDynamicShape()) { | |||
| from_layout = layout_transfer.from_in(); | |||
| to_layout = layout_transfer.to_in(); | |||
| } else { | |||
| std::shared_ptr<ReshapeLayoutTransfer> ptr = layout_transfer.UnifyDeviceArrangementAndTensorShape(); | |||
| if (ptr == nullptr) { | |||
| MS_LOG(ERROR) << "Infer tensor layout return nullptr!"; | |||
| return nullptr; | |||
| } | |||
| if (!ptr->ExpandAble()) { | |||
| expand_able_ = false; | |||
| return InferTensorRedistributionOperatorListUnExpand(is_cost_model); | |||
| } | |||
| from_layout = ptr->from_in(); | |||
| to_layout = ptr->to_in(); | |||
| } | |||
| TensorLayout from_layout = ptr->from_in(); | |||
| TensorLayout to_layout = ptr->to_in(); | |||
| MS_LOG(DEBUG) << "reshape from_layout " << from_layout.ToString(); | |||
| MS_LOG(DEBUG) << "reshape to_layout " << to_layout.ToString(); | |||
| MS_LOG(DEBUG) << "reshape from_origin_ " << from_origin_.ToString(); | |||
| @@ -33,6 +33,7 @@ reduce_sum = P.ReduceSum() | |||
| unsorted_segment_sum = P.UnsortedSegmentSum() | |||
| transpose = P.Transpose() | |||
| shape_op = P.Shape() | |||
| dyn_shape_op = P.DynamicShape() | |||
| reshape = P.Reshape() | |||
| size_op = P.Size() | |||
| invert_permutation = P.InvertPermutation() | |||
| @@ -365,7 +366,10 @@ def get_bprop_gather_v2(self): | |||
| # Example: out_shape:(3,2,3) axis 1 -> (1,0,2) | |||
| perm_1 = _generate_shape_index(out_shp, ind_shp, axis) | |||
| values_transpose = transpose(dout, perm_1) | |||
| params_grad = unsorted_segment_sum(values_transpose, indices, shape_op(x)[axis]) | |||
| if -1 in shape_op(x): | |||
| params_grad = unsorted_segment_sum(values_transpose, indices, dyn_shape_op(x)[axis]) | |||
| else: | |||
| params_grad = unsorted_segment_sum(values_transpose, indices, shape_op(x)[axis]) | |||
| # Example: out_shape:(3,2,3) axis 2 -> (1,2,0) | |||
| perm_2 = _generate_inverse_index(x_shp, axis) | |||
| params_grad = transpose(params_grad, perm_2) | |||
| @@ -0,0 +1,118 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| import numpy as np | |||
| import mindspore as ms | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore import context | |||
| from mindspore.common.api import _executor | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.ops import composite as C | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore.nn import TrainOneStepCell, Momentum | |||
| from tests.ut.python.ops.test_math_ops import VirtualLoss | |||
| grad_all = C.GradOperation(get_all=True) | |||
| class NetWithLoss(nn.Cell): | |||
| def __init__(self, network): | |||
| super(NetWithLoss, self).__init__() | |||
| self.loss = VirtualLoss() | |||
| self.network = network | |||
| def construct(self, x): | |||
| predict = self.network(x) | |||
| return self.loss(predict) | |||
| class GradWrap(nn.Cell): | |||
| def __init__(self, network): | |||
| super(GradWrap, self).__init__() | |||
| self.network = network | |||
| def construct(self, x): | |||
| return grad_all(self.network)(x) | |||
| def test_unique_column_split(): | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.unique = P.Unique().shard(((1,),)) | |||
| self.relu = P.ReLU() | |||
| self.mul = P.Mul() | |||
| self.embedding_lookp = P.GatherV2().shard(((1, 8), (1,))) | |||
| self.embedding_table = Parameter(initializer('normal', [2000, 128]), | |||
| name='embedding_table') | |||
| self.gatherv2 = P.GatherV2().shard(((1, 8), (1,))) | |||
| self.reshape = P.Reshape() | |||
| self.matmul = P.MatMul() | |||
| self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight") | |||
| def construct(self, indices): | |||
| indices_flatten = self.reshape(indices, (-1,)) | |||
| unique_id, unique_idx = self.unique(indices_flatten) | |||
| unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0) | |||
| weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0) | |||
| weight = self.reshape(weight_flatten, (32, 64, 128)) | |||
| vx = self.mul(weight, self.mul_weight) | |||
| return vx | |||
| size = 8 | |||
| context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="auto_parallel") | |||
| x = Tensor(np.ones([32, 64]), dtype=ms.int32) | |||
| net = Net() | |||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| train_net = TrainOneStepCell(net, optimizer) | |||
| train_net.set_auto_parallel() | |||
| train_net.set_train() | |||
| _executor.compile(train_net, x) | |||
| def test_unique_row_split(): | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super().__init__() | |||
| self.unique = P.Unique().shard(((1,),)) | |||
| self.relu = P.ReLU() | |||
| self.mul = P.Mul() | |||
| self.embedding_lookp = P.GatherV2().shard(((8, 1), (1,))) | |||
| self.embedding_table = Parameter(initializer('normal', [2000, 128]), | |||
| name='embedding_table') | |||
| self.gatherv2 = P.GatherV2().shard(((1, 1), (8,))) | |||
| self.reshape = P.Reshape() | |||
| self.matmul = P.MatMul() | |||
| self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight") | |||
| def construct(self, indices): | |||
| indices_flatten = self.reshape(indices, (-1,)) | |||
| unique_id, unique_idx = self.unique(indices_flatten) | |||
| unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0) | |||
| weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0) | |||
| weight = self.reshape(weight_flatten, (32, 64, 128)) | |||
| vx = self.mul(weight, self.mul_weight) | |||
| return vx | |||
| size = 8 | |||
| context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="stand_alone") | |||
| x = Tensor(np.ones([32, 64]), dtype=ms.int32) | |||
| net = Net() | |||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| train_net = TrainOneStepCell(net, optimizer) | |||
| train_net.set_auto_parallel() | |||
| train_net.set_train() | |||
| _executor.compile(train_net, x) | |||