| @@ -0,0 +1,43 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "kernel/gpu/arrays/select_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE(Select, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeBool) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| SelectGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE(Select, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeBool) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddOutputAttr(kNumberTypeFloat16), | |||
| SelectGpuKernel, half) | |||
| MS_REG_GPU_KERNEL_ONE(Select, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeBool) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32), | |||
| SelectGpuKernel, int) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,95 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_SELECT_GPU_KERNEL_H | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_SELECT_GPU_KERNEL_H | |||
| #include <vector> | |||
| #include "kernel/gpu/gpu_kernel.h" | |||
| #include "kernel/gpu/gpu_kernel_factory.h" | |||
| #include "kernel/gpu/cuda_impl/select_impl.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class SelectGpuKernel : public GpuKernel { | |||
| public: | |||
| SelectGpuKernel() : input_size_(0), output_size_(0) {} | |||
| ~SelectGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||
| const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override { | |||
| bool *input_cond = GetDeviceAddress<bool>(inputs, 0); | |||
| T *input_x = GetDeviceAddress<T>(inputs, 1); | |||
| T *input_y = GetDeviceAddress<T>(inputs, 2); | |||
| T *output = GetDeviceAddress<T>(outputs, 0); | |||
| CalSelect(output_size_ / sizeof(T), input_cond, input_x, input_y, output, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| if (!CheckParam(kernel_node)) { | |||
| return false; | |||
| } | |||
| auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| input_size_ = sizeof(bool); | |||
| output_size_ = sizeof(T); | |||
| for (size_t x : shape) { | |||
| input_size_ = input_size_ * x; | |||
| output_size_ = output_size_ * x; | |||
| } | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(input_size_); | |||
| input_size_list_.push_back(output_size_); | |||
| input_size_list_.push_back(output_size_); | |||
| output_size_list_.push_back(output_size_); | |||
| } | |||
| private: | |||
| bool CheckParam(const CNodePtr &kernel_node) { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 3) { | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but SelectGpuKernel needs 3 output."; | |||
| return false; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(ERROR) << "Output number is " << output_num << ", but SelectGpuKernel needs 1 output."; | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| size_t input_size_; | |||
| size_t output_size_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_SELECT_GPU_KERNEL_H | |||
| @@ -0,0 +1,42 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <stdio.h> | |||
| #include <stdint.h> | |||
| #include <include/cuda_runtime.h> | |||
| #include "kernel/gpu/cuda_impl/select_impl.cuh" | |||
| template <typename T> | |||
| __global__ void Select(const size_t size, const bool* cond, const T* input_x, const T* input_y, T* output) { | |||
| for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) { | |||
| output[pos] = cond[pos] ? input_x[pos] : input_y[pos]; | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| void CalSelect(const size_t size, const bool* cond, const T* input_x, const T* input_y, T* output, | |||
| cudaStream_t cuda_stream) { | |||
| Select<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, cond, input_x, input_y, output); | |||
| return; | |||
| } | |||
| template void CalSelect<float>(const size_t size, const bool* cond, const float* input_X, const float* input_y, | |||
| float* output, cudaStream_t cuda_stream); | |||
| template void CalSelect<int>(const size_t size, const bool* cond, const int* input_X, const int* input_y, int* output, | |||
| cudaStream_t cuda_stream); | |||
| template void CalSelect<half>(const size_t size, const bool* cond, const half* input_X, const half* input_y, | |||
| half* output, cudaStream_t cuda_stream); | |||
| @@ -0,0 +1,25 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SELECT_IMPL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SELECT_IMPL_H_ | |||
| #include "device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| void CalSelect(const size_t size, const bool* cond, const T* input_x, const T* input_y, T* output, | |||
| cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SELECT_IMPL_H_ | |||
| @@ -0,0 +1,47 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import pytest | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| import mindspore.nn as nn | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.select = P.Select() | |||
| def construct(self, cond, x, y): | |||
| return self.select(cond, x, y) | |||
| cond = np.array([[True, False], [True, False]]).astype(np.bool) | |||
| x = np.array([[1.2, 1], [1, 0]]).astype(np.float32) | |||
| y = np.array([[1, 2], [3, 4.0]]).astype(np.float32) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_select(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| select = Net() | |||
| output = select(Tensor(cond), Tensor(x), Tensor(y)) | |||
| expect = [[1.2, 2], [1, 4.0]] | |||
| error = np.ones(shape=[2, 2]) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||