|
|
|
@@ -28,6 +28,7 @@ import mindspore.dataset.engine.datasets as de |
|
|
|
import mindspore.dataset.transforms.c_transforms as C |
|
|
|
from mindspore import context |
|
|
|
from mindspore import log as logger |
|
|
|
from mindspore.ops import operations as P |
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
from mindspore.nn.optim import Lamb |
|
|
|
from mindspore.train.callback import Callback |
|
|
|
@@ -129,7 +130,10 @@ def weight_variable(shape): |
|
|
|
class BertLearningRate(lr_schedules.LearningRateSchedule): |
|
|
|
def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power): |
|
|
|
super(BertLearningRate, self).__init__() |
|
|
|
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps) |
|
|
|
self.warmup_flag = False |
|
|
|
if warmup_steps > 0: |
|
|
|
self.warmup_flag = True |
|
|
|
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps) |
|
|
|
self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power) |
|
|
|
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32)) |
|
|
|
|
|
|
|
@@ -138,10 +142,13 @@ class BertLearningRate(lr_schedules.LearningRateSchedule): |
|
|
|
self.cast = P.Cast() |
|
|
|
|
|
|
|
def construct(self, global_step): |
|
|
|
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32) |
|
|
|
warmup_lr = self.warmup_lr(global_step) |
|
|
|
decay_lr = self.decay_lr(global_step) |
|
|
|
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr |
|
|
|
if self.warmup_flag: |
|
|
|
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32) |
|
|
|
warmup_lr = self.warmup_lr(global_step) |
|
|
|
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr |
|
|
|
else: |
|
|
|
lr = decay_lr |
|
|
|
return lr |
|
|
|
|
|
|
|
|
|
|
|
@@ -174,6 +181,10 @@ class TimeMonitor(Callback): |
|
|
|
self.epoch_mseconds_list.append(epoch_mseconds) |
|
|
|
self.per_step_mseconds_list.append(epoch_mseconds / self.data_size) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_bert_percision(): |
|
|
|
"""test bert percision""" |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) |
|
|
|
@@ -187,10 +198,11 @@ def test_bert_percision(): |
|
|
|
power=10.0, warmup_steps=0) |
|
|
|
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower() |
|
|
|
no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower() |
|
|
|
decay_params = list(filter(decay_filter, net_with_loss.trainable_params())) |
|
|
|
other_params = list(filter(no_decay_filter, net_with_loss.trainable_params())) |
|
|
|
decay_params = list(filter(decay_filter, netwithloss.trainable_params())) |
|
|
|
other_params = list(filter(no_decay_filter, netwithloss.trainable_params())) |
|
|
|
group_params = [{'params': decay_params, 'weight_decay': 0.01}, |
|
|
|
{'params': other_params}] |
|
|
|
{'params': other_params}, |
|
|
|
{'order_params': netwithloss.trainable_params()}] |
|
|
|
optimizer = Lamb(group_params, lr) |
|
|
|
scale_window = 3 |
|
|
|
scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window) |
|
|
|
@@ -239,6 +251,10 @@ def test_bert_percision(): |
|
|
|
print("loss scale: {}".format(loss_scale)) |
|
|
|
assert np.allclose(loss_scale, expect_loss_scale, 0, 0) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_bert_performance(): |
|
|
|
"""test bert performance""" |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False) |
|
|
|
@@ -253,10 +269,11 @@ def test_bert_performance(): |
|
|
|
power=10.0, warmup_steps=0) |
|
|
|
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower() |
|
|
|
no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower() |
|
|
|
decay_params = list(filter(decay_filter, net_with_loss.trainable_params())) |
|
|
|
other_params = list(filter(no_decay_filter, net_with_loss.trainable_params())) |
|
|
|
decay_params = list(filter(decay_filter, netwithloss.trainable_params())) |
|
|
|
other_params = list(filter(no_decay_filter, netwithloss.trainable_params())) |
|
|
|
group_params = [{'params': decay_params, 'weight_decay': 0.01}, |
|
|
|
{'params': other_params}] |
|
|
|
{'params': other_params}, |
|
|
|
{'order_params': netwithloss.trainable_params()}] |
|
|
|
optimizer = Lamb(group_params, lr) |
|
|
|
|
|
|
|
scale_window = 3 |
|
|
|
|