| @@ -27,6 +27,33 @@ __kernel void to_format_NHWC_to_NHWC4_IMG(__global FLT4 *src_data, __write_only | |||
| } | |||
| WRITE_IMAGE(dst_data, (int2)(Y * size.z + Z, X), data); | |||
| } | |||
| __kernel void to_format_NHWC_to_NC4HW4_IMG(__global FLT4 *src_data, __write_only image2d_t dst_data, int4 size, | |||
| int4 shape) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| if (X >= size.x || Y >= size.y || Z >= size.z) { | |||
| return; | |||
| } | |||
| int offset = (X * shape.z + Y) * shape.w + Z * 4; | |||
| __global FLT *src_addr = (__global FLT *)src_data; | |||
| src_addr += offset; | |||
| FLT4 data = (FLT4)(0.f); | |||
| if ((Z + 1) * 4 <= shape.w) { | |||
| data = ((__global FLT4 *)src_addr)[0]; | |||
| } else { | |||
| if ((shape.w - Z * 4) >= 1) { | |||
| data.x = src_addr[0]; | |||
| } | |||
| if ((shape.w - Z * 4) >= 2) { | |||
| data.y = src_addr[1]; | |||
| } | |||
| if ((shape.w - Z * 4) >= 3) { | |||
| data.z = src_addr[2]; | |||
| } | |||
| } | |||
| WRITE_IMAGE(dst_data, (int2)(Y, Z * size.x + X), data); | |||
| } | |||
| __kernel void to_format_NHWC4_to_NHWC4_IMG(__global FLT4 *src_data, __write_only image2d_t dst_data, int4 size, | |||
| int4 shape) { | |||
| int X = get_global_id(0); | |||
| @@ -84,6 +111,32 @@ __kernel void to_format_NHWC4_to_NHWC_BUF(__read_only image2d_t src_data, __glob | |||
| } | |||
| } | |||
| } | |||
| __kernel void to_format_NC4HW4_to_NHWC_BUF(__read_only image2d_t src_data, __global FLT4 *dst_data, int4 size, | |||
| int4 shape) { | |||
| int X = get_global_id(0); | |||
| int Y = get_global_id(1); | |||
| int Z = get_global_id(2); | |||
| if (X >= size.x || Y >= size.y || Z >= size.z) { | |||
| return; | |||
| } | |||
| FLT4 data = READ_IMAGE(src_data, smp_zero, (int2)(Y, Z * size.x + X)); | |||
| int offset = (X * shape.z + Y) * shape.w + Z * 4; | |||
| __global FLT *dst_addr = (__global FLT *)dst_data; | |||
| dst_addr += offset; | |||
| if ((Z + 1) * 4 <= shape.w) { | |||
| ((__global FLT4 *)dst_addr)[0] = data; | |||
| } else { | |||
| if (shape.w - Z * 4 >= 1) { | |||
| dst_addr[0] = data.x; | |||
| } | |||
| if (shape.w - Z * 4 >= 2) { | |||
| dst_addr[1] = data.y; | |||
| } | |||
| if (shape.w - Z * 4 >= 3) { | |||
| dst_addr[2] = data.z; | |||
| } | |||
| } | |||
| } | |||
| __kernel void to_format_NC4HW4_to_NC4HW4_BUF(__read_only image2d_t src_data, __global FLT4 *dst_data, int4 size, | |||
| int4 shape) { | |||
| // size(h, w, c, 1), shape(n, c, h, w) | |||
| @@ -43,12 +43,9 @@ namespace mindspore::kernel { | |||
| int DepthwiseConv2dOpenCLKernel::Init() { | |||
| auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); | |||
| std::string kernel_name = "DepthwiseConv2d"; | |||
| auto in_format = in_tensors_[0]->GetFormat(); | |||
| auto in_format = op_format_; | |||
| in_ori_format_ = in_tensors_[0]->GetFormat(); | |||
| out_ori_format_ = out_tensors_[0]->GetFormat(); | |||
| in_format = (in_format == schema::Format_NHWC) | |||
| ? schema::Format_NHWC4 | |||
| : ((in_format == schema::Format_NCHW) ? schema::Format_NC4HW4 : in_format); | |||
| if (in_format != schema::Format_NHWC4 && in_format != schema::Format_NC4HW4) { | |||
| MS_LOG(ERROR) << "input format(" << in_format << ") " | |||
| << "format not support!"; | |||
| @@ -65,13 +65,13 @@ int ToFormatOpenCLKernel::Init() { | |||
| int ToFormatOpenCLKernel::InitNHWCShape() { | |||
| std::vector<int> shapex = out_tensors_[0]->shape(); | |||
| size_t n, h, w, c; | |||
| if (out_tensors_[0]->GetFormat() == schema::Format_NHWC4 || out_tensors_[0]->GetFormat() == schema::Format_NHWC) { | |||
| if (out_tensors_[0]->GetFormat() == schema::Format_NC4HW4 || out_tensors_[0]->GetFormat() == schema::Format_NHWC4 || | |||
| out_tensors_[0]->GetFormat() == schema::Format_NHWC) { | |||
| n = shapex[0]; | |||
| h = shapex[1]; | |||
| w = shapex[2]; | |||
| c = shapex[3]; | |||
| } else if (out_tensors_[0]->GetFormat() == schema::Format_NC4HW4 || | |||
| out_tensors_[0]->GetFormat() == schema::Format_NCHW) { | |||
| } else if (out_tensors_[0]->GetFormat() == schema::Format_NCHW) { | |||
| n = shapex[0]; | |||
| h = shapex[2]; | |||
| w = shapex[3]; | |||
| @@ -105,21 +105,20 @@ int ToFormatOpenCLKernel::GetLocalSize(size_t idx, const std::vector<size_t> &gl | |||
| int ToFormatOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) { | |||
| size_t im_dst_x, im_dst_y; | |||
| std::vector<int> shapex = out_tensors_[0]->shape(); | |||
| if (out_tensors_[0]->GetFormat() == schema::Format_NC4HW4) { | |||
| int c = shapex[1] * shapex[2]; | |||
| int h = shapex[0]; | |||
| int w = shapex[3]; | |||
| im_dst_y = h * UP_DIV(c, C4NUM); | |||
| int c = nhwc_shape_[3]; | |||
| int h = nhwc_shape_[1]; | |||
| int w = nhwc_shape_[2]; | |||
| im_dst_y = nhwc_shape_[0] * h * UP_DIV(c, C4NUM); | |||
| im_dst_x = w; | |||
| } else if (out_tensors_[0]->GetFormat() == schema::Format_NHWC4) { | |||
| int h = shapex[0] * shapex[1]; | |||
| int w = shapex[2]; | |||
| int c = shapex[3]; | |||
| int h = nhwc_shape_[0] * nhwc_shape_[1]; | |||
| int w = nhwc_shape_[2]; | |||
| int c = nhwc_shape_[3]; | |||
| im_dst_x = w * UP_DIV(c, C4NUM); | |||
| im_dst_y = h; | |||
| } else if (out_tensors_[0]->GetFormat() == schema::Format_NC4) { | |||
| int c = shapex[1]; | |||
| int c = nhwc_shape_[1]; | |||
| im_dst_x = UP_DIV(c, C4NUM); | |||
| im_dst_y = 1; | |||
| } else { | |||
| @@ -58,7 +58,7 @@ class OpenCLKernel : public LiteKernel { | |||
| OpenCLMemType out_mem_type_{OpenCLMemType::IMG}; | |||
| schema::Format in_ori_format_{schema::Format_NHWC}; | |||
| schema::Format out_ori_format_{schema::Format_NHWC4}; | |||
| schema::Format op_format_{schema::Format_NC4HW4}; | |||
| schema::Format op_format_{schema::Format_NHWC4}; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| @@ -66,12 +66,12 @@ void DepthWiseTestMain(ConvParameter *conv_param, T2 *input_data, T1 *weight_dat | |||
| std::vector<int> shape_bias = {conv_param->output_channel_}; | |||
| std::vector<int> shape_out; | |||
| std::vector<int> shape_in; | |||
| if (format == schema::Format_NHWC || format == schema::Format_NHWC4) { | |||
| if (format == schema::Format_NHWC || format == schema::Format_NHWC4 || format == schema::Format_NC4HW4) { | |||
| shape_in = std::vector<int>( | |||
| {conv_param->input_batch_, conv_param->input_h_, conv_param->input_w_, conv_param->input_channel_}); | |||
| shape_out = std::vector<int>( | |||
| {conv_param->output_batch_, conv_param->output_h_, conv_param->output_w_, conv_param->output_channel_}); | |||
| } else if (format == schema::Format_NCHW || format == schema::Format_NC4HW4) { | |||
| } else if (format == schema::Format_NCHW) { | |||
| shape_in = std::vector<int>( | |||
| {conv_param->input_batch_, conv_param->input_channel_, conv_param->input_h_, conv_param->input_w_}); | |||
| shape_out = std::vector<int>( | |||
| @@ -98,6 +98,7 @@ void DepthWiseTestMain(ConvParameter *conv_param, T2 *input_data, T1 *weight_dat | |||
| delete[] packed_input; | |||
| return; | |||
| } | |||
| pKernel->SetFormatType(format); | |||
| pKernel->Init(); | |||
| std::vector<kernel::LiteKernel *> kernels{pKernel.get()}; | |||