|
|
|
@@ -29,7 +29,7 @@ from src.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2, |
|
|
|
from src.config import config |
|
|
|
from src.dataset import create_ssd_dataset, create_mindrecord |
|
|
|
from src.lr_schedule import get_lr |
|
|
|
from src.init_params import init_net_param, filter_checkpoint_parameter |
|
|
|
from src.init_params import init_net_param, filter_checkpoint_parameter_by_list |
|
|
|
|
|
|
|
set_seed(1) |
|
|
|
|
|
|
|
@@ -45,7 +45,7 @@ def get_args(): |
|
|
|
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.") |
|
|
|
parser.add_argument("--lr", type=float, default=0.05, help="Learning rate, default is 0.05.") |
|
|
|
parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.") |
|
|
|
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, defalut is coco.") |
|
|
|
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.") |
|
|
|
parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.") |
|
|
|
parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.") |
|
|
|
parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.") |
|
|
|
@@ -122,8 +122,8 @@ def main(): |
|
|
|
if args_opt.pre_trained: |
|
|
|
param_dict = load_checkpoint(args_opt.pre_trained) |
|
|
|
if args_opt.filter_weight: |
|
|
|
filter_checkpoint_parameter(param_dict) |
|
|
|
load_param_into_net(net, param_dict) |
|
|
|
filter_checkpoint_parameter_by_list(param_dict, config.checkpoint_filter_list) |
|
|
|
load_param_into_net(net, param_dict, True) |
|
|
|
|
|
|
|
if args_opt.freeze_layer == "backbone": |
|
|
|
for param in backbone.feature_1.trainable_params(): |
|
|
|
|