| @@ -48,6 +48,11 @@ class Softmax(Cell): | |||||
| Outputs: | Outputs: | ||||
| Tensor, which has the same type and shape as `x` with values in the range[0,1]. | Tensor, which has the same type and shape as `x` with values in the range[0,1]. | ||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | |||||
| >>> softmax = nn.Softmax() | |||||
| >>> softmax(input_x) | |||||
| [0.03168 0.01166 0.0861 0.636 0.2341] | |||||
| """ | """ | ||||
| def __init__(self, axis=-1): | def __init__(self, axis=-1): | ||||
| super(Softmax, self).__init__() | super(Softmax, self).__init__() | ||||
| @@ -78,6 +83,12 @@ class LogSoftmax(Cell): | |||||
| Outputs: | Outputs: | ||||
| Tensor, which has the same type and shape as the input as `x` with values in the range[-inf,0). | Tensor, which has the same type and shape as the input as `x` with values in the range[-inf,0). | ||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) | |||||
| >>> log_softmax = nn.LogSoftmax() | |||||
| >>> log_softmax(input_x) | |||||
| [[-5.00672150e+00 -6.72150636e-03 -1.20067215e+01] | |||||
| [-7.00091219e+00 -1.40009127e+01 -9.12250078e-04]] | |||||
| """ | """ | ||||
| def __init__(self, axis=-1): | def __init__(self, axis=-1): | ||||
| @@ -134,6 +145,11 @@ class ReLU(Cell): | |||||
| Outputs: | Outputs: | ||||
| Tensor, with the same type and shape as the `input_data`. | Tensor, with the same type and shape as the `input_data`. | ||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([-1, 2, -3, 2, -1]), mindspore.float16) | |||||
| >>> relu = nn.ReLU() | |||||
| >>> relu(input_x) | |||||
| [0. 2. 0. 2. 0.] | |||||
| """ | """ | ||||
| def __init__(self): | def __init__(self): | ||||
| super(ReLU, self).__init__() | super(ReLU, self).__init__() | ||||
| @@ -157,6 +173,11 @@ class ReLU6(Cell): | |||||
| Outputs: | Outputs: | ||||
| Tensor, which has the same type with `input_data`. | Tensor, which has the same type with `input_data`. | ||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | |||||
| >>> relu6 = nn.ReLU6() | |||||
| >>> relu6(input_x) | |||||
| [0. 0. 0. 2. 1.] | |||||
| """ | """ | ||||
| def __init__(self): | def __init__(self): | ||||
| super(ReLU6, self).__init__() | super(ReLU6, self).__init__() | ||||
| @@ -188,6 +209,12 @@ class LeakyReLU(Cell): | |||||
| Outputs: | Outputs: | ||||
| Tensor, has the same type and shape with the `input_x`. | Tensor, has the same type and shape with the `input_x`. | ||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) | |||||
| >>> leaky_relu = nn.LeakyReLU() | |||||
| >>> leaky_relu(input_x) | |||||
| [[-0.2 4. -1.6] | |||||
| [ 2 -1. 9.]] | |||||
| """ | """ | ||||
| def __init__(self, alpha=0.2): | def __init__(self, alpha=0.2): | ||||
| super(LeakyReLU, self).__init__() | super(LeakyReLU, self).__init__() | ||||
| @@ -224,6 +251,11 @@ class Tanh(Cell): | |||||
| Outputs: | Outputs: | ||||
| Tensor, with the same type and shape as the `input_data`. | Tensor, with the same type and shape as the `input_data`. | ||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([1, 2, 3, 2, 1]), mindspore.float16) | |||||
| >>> tanh = nn.Tanh() | |||||
| >>> tanh(input_x) | |||||
| [0.7617 0.964 0.995 0.964 0.7617] | |||||
| """ | """ | ||||
| def __init__(self): | def __init__(self): | ||||
| super(Tanh, self).__init__() | super(Tanh, self).__init__() | ||||
| @@ -249,6 +281,12 @@ class GELU(Cell): | |||||
| Outputs: | Outputs: | ||||
| Tensor, with the same type and shape as the `input_data`. | Tensor, with the same type and shape as the `input_data`. | ||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) | |||||
| >>> gelu = nn.GELU() | |||||
| >>> gelu(input_x) | |||||
| [[-1.5880802e-01 3.9999299e+00 -3.1077917e-21] | |||||
| [ 1.9545976e+00 -2.2918017e-07 9.0000000e+00]] | |||||
| """ | """ | ||||
| def __init__(self): | def __init__(self): | ||||
| super(GELU, self).__init__() | super(GELU, self).__init__() | ||||
| @@ -273,6 +311,11 @@ class Sigmoid(Cell): | |||||
| Outputs: | Outputs: | ||||
| Tensor, with the same type and shape as the `input_data`. | Tensor, with the same type and shape as the `input_data`. | ||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | |||||
| >>> sigmoid = nn.Sigmoid() | |||||
| >>> sigmoid(input_x) | |||||
| [0.2688 0.11914 0.5 0.881 0.7305] | |||||
| """ | """ | ||||
| def __init__(self): | def __init__(self): | ||||
| super(Sigmoid, self).__init__() | super(Sigmoid, self).__init__() | ||||