Merge pull request !4831 from byweng/add_testtags/v0.7.0-beta
| @@ -0,0 +1,60 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| Produce the dataset | |||||
| """ | |||||
| import mindspore.dataset as ds | |||||
| import mindspore.dataset.transforms.vision.c_transforms as CV | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| from mindspore.dataset.transforms.vision import Inter | |||||
| from mindspore.common import dtype as mstype | |||||
| def create_dataset(data_path, batch_size=32, repeat_size=1, | |||||
| num_parallel_workers=1): | |||||
| """ | |||||
| create dataset for train or test | |||||
| """ | |||||
| # define dataset | |||||
| mnist_ds = ds.MnistDataset(data_path) | |||||
| resize_height, resize_width = 32, 32 | |||||
| rescale = 1.0 / 255.0 | |||||
| shift = 0.0 | |||||
| rescale_nml = 1 / 0.3081 | |||||
| shift_nml = -1 * 0.1307 / 0.3081 | |||||
| # define map operations | |||||
| resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode | |||||
| rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) | |||||
| rescale_op = CV.Rescale(rescale, shift) | |||||
| hwc2chw_op = CV.HWC2CHW() | |||||
| type_cast_op = C.TypeCast(mstype.int32) | |||||
| # apply map operations on images | |||||
| mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) | |||||
| # apply DatasetOps | |||||
| buffer_size = 10000 | |||||
| mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script | |||||
| mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) | |||||
| mnist_ds = mnist_ds.repeat(repeat_size) | |||||
| return mnist_ds | |||||
| @@ -0,0 +1,145 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """test bnn layers""" | |||||
| import numpy as np | |||||
| from mindspore import Tensor | |||||
| from mindspore.common.initializer import TruncatedNormal | |||||
| import mindspore.nn as nn | |||||
| from mindspore.nn import TrainOneStepCell | |||||
| from mindspore.nn.probability import bnn_layers | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore import context | |||||
| from dataset import create_dataset | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU") | |||||
| def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): | |||||
| """weight initial for conv layer""" | |||||
| weight = weight_variable() | |||||
| return nn.Conv2d(in_channels, out_channels, | |||||
| kernel_size=kernel_size, stride=stride, padding=padding, | |||||
| weight_init=weight, has_bias=False, pad_mode="valid") | |||||
| def fc_with_initialize(input_channels, out_channels): | |||||
| """weight initial for fc layer""" | |||||
| weight = weight_variable() | |||||
| bias = weight_variable() | |||||
| return nn.Dense(input_channels, out_channels, weight, bias) | |||||
| def weight_variable(): | |||||
| """weight initial""" | |||||
| return TruncatedNormal(0.02) | |||||
| class BNNLeNet5(nn.Cell): | |||||
| """ | |||||
| bayesian Lenet network | |||||
| Args: | |||||
| num_class (int): Num classes. Default: 10. | |||||
| Returns: | |||||
| Tensor, output tensor | |||||
| Examples: | |||||
| >>> BNNLeNet5(num_class=10) | |||||
| """ | |||||
| def __init__(self, num_class=10): | |||||
| super(BNNLeNet5, self).__init__() | |||||
| self.num_class = num_class | |||||
| self.conv1 = bnn_layers.ConvReparam(1, 6, 5, stride=1, padding=0, has_bias=False, pad_mode="valid") | |||||
| self.conv2 = conv(6, 16, 5) | |||||
| self.fc1 = bnn_layers.DenseReparam(16 * 5 * 5, 120) | |||||
| self.fc2 = fc_with_initialize(120, 84) | |||||
| self.fc3 = fc_with_initialize(84, self.num_class) | |||||
| self.relu = nn.ReLU() | |||||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||||
| self.flatten = nn.Flatten() | |||||
| self.reshape = P.Reshape() | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.conv2(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.flatten(x) | |||||
| x = self.fc1(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc2(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc3(x) | |||||
| return x | |||||
| def train_model(train_net, net, dataset): | |||||
| accs = [] | |||||
| loss_sum = 0 | |||||
| for _, data in enumerate(dataset.create_dict_iterator()): | |||||
| train_x = Tensor(data['image'].astype(np.float32)) | |||||
| label = Tensor(data['label'].astype(np.int32)) | |||||
| loss = train_net(train_x, label) | |||||
| output = net(train_x) | |||||
| log_output = P.LogSoftmax(axis=1)(output) | |||||
| acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy()) | |||||
| accs.append(acc) | |||||
| loss_sum += loss.asnumpy() | |||||
| loss_sum = loss_sum / len(accs) | |||||
| acc_mean = np.mean(accs) | |||||
| return loss_sum, acc_mean | |||||
| def validate_model(net, dataset): | |||||
| accs = [] | |||||
| for _, data in enumerate(dataset.create_dict_iterator()): | |||||
| train_x = Tensor(data['image'].astype(np.float32)) | |||||
| label = Tensor(data['label'].astype(np.int32)) | |||||
| output = net(train_x) | |||||
| log_output = P.LogSoftmax(axis=1)(output) | |||||
| acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy()) | |||||
| accs.append(acc) | |||||
| acc_mean = np.mean(accs) | |||||
| return acc_mean | |||||
| if __name__ == "__main__": | |||||
| network = BNNLeNet5() | |||||
| criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001) | |||||
| net_with_loss = bnn_layers.WithBNNLossCell(network, criterion, 60000, 0.000001) | |||||
| train_bnn_network = TrainOneStepCell(net_with_loss, optimizer) | |||||
| train_bnn_network.set_train() | |||||
| train_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/train', 64, 1) | |||||
| test_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/test', 64, 1) | |||||
| epoch = 100 | |||||
| for i in range(epoch): | |||||
| train_loss, train_acc = train_model(train_bnn_network, network, test_set) | |||||
| valid_acc = validate_model(network, test_set) | |||||
| print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tvalidation Accuracy: {:.4f}'.format( | |||||
| i, train_loss, train_acc, valid_acc)) | |||||
| @@ -0,0 +1,150 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """test transform_to_bnn_layer""" | |||||
| import numpy as np | |||||
| from mindspore import Tensor | |||||
| from mindspore.common.initializer import TruncatedNormal | |||||
| import mindspore.nn as nn | |||||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||||
| from mindspore.nn.probability import transforms, bnn_layers | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore import context | |||||
| from dataset import create_dataset | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU") | |||||
| def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): | |||||
| """weight initial for conv layer""" | |||||
| weight = weight_variable() | |||||
| return nn.Conv2d(in_channels, out_channels, | |||||
| kernel_size=kernel_size, stride=stride, padding=padding, | |||||
| weight_init=weight, has_bias=False, pad_mode="valid") | |||||
| def fc_with_initialize(input_channels, out_channels): | |||||
| """weight initial for fc layer""" | |||||
| weight = weight_variable() | |||||
| bias = weight_variable() | |||||
| return nn.Dense(input_channels, out_channels, weight, bias) | |||||
| def weight_variable(): | |||||
| """weight initial""" | |||||
| return TruncatedNormal(0.02) | |||||
| class LeNet5(nn.Cell): | |||||
| """ | |||||
| Lenet network | |||||
| Args: | |||||
| num_class (int): Num classes. Default: 10. | |||||
| Returns: | |||||
| Tensor, output tensor | |||||
| Examples: | |||||
| >>> LeNet5(num_class=10) | |||||
| """ | |||||
| def __init__(self, num_class=10): | |||||
| super(LeNet5, self).__init__() | |||||
| self.num_class = num_class | |||||
| self.conv1 = conv(1, 6, 5) | |||||
| self.conv2 = conv(6, 16, 5) | |||||
| self.fc1 = fc_with_initialize(16 * 5 * 5, 120) | |||||
| self.fc2 = fc_with_initialize(120, 84) | |||||
| self.fc3 = fc_with_initialize(84, self.num_class) | |||||
| self.relu = nn.ReLU() | |||||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||||
| self.flatten = nn.Flatten() | |||||
| self.reshape = P.Reshape() | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.conv2(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.flatten(x) | |||||
| x = self.fc1(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc2(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc3(x) | |||||
| return x | |||||
| def train_model(train_net, net, dataset): | |||||
| accs = [] | |||||
| loss_sum = 0 | |||||
| for _, data in enumerate(dataset.create_dict_iterator()): | |||||
| train_x = Tensor(data['image'].astype(np.float32)) | |||||
| label = Tensor(data['label'].astype(np.int32)) | |||||
| loss = train_net(train_x, label) | |||||
| output = net(train_x) | |||||
| log_output = P.LogSoftmax(axis=1)(output) | |||||
| acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy()) | |||||
| accs.append(acc) | |||||
| loss_sum += loss.asnumpy() | |||||
| loss_sum = loss_sum / len(accs) | |||||
| acc_mean = np.mean(accs) | |||||
| return loss_sum, acc_mean | |||||
| def validate_model(net, dataset): | |||||
| accs = [] | |||||
| for _, data in enumerate(dataset.create_dict_iterator()): | |||||
| train_x = Tensor(data['image'].astype(np.float32)) | |||||
| label = Tensor(data['label'].astype(np.int32)) | |||||
| output = net(train_x) | |||||
| log_output = P.LogSoftmax(axis=1)(output) | |||||
| acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy()) | |||||
| accs.append(acc) | |||||
| acc_mean = np.mean(accs) | |||||
| return acc_mean | |||||
| if __name__ == "__main__": | |||||
| network = LeNet5() | |||||
| criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001) | |||||
| net_with_loss = WithLossCell(network, criterion) | |||||
| train_network = TrainOneStepCell(net_with_loss, optimizer) | |||||
| bnn_transformer = transforms.TransformToBNN(train_network, 60000, 0.000001) | |||||
| train_bnn_network = bnn_transformer.transform_to_bnn_layer(nn.Conv2d, bnn_layers.ConvReparam) | |||||
| # train_bnn_network = bnn_transformer.transform_to_bnn_layer(nn.Dense, bnn_layers.DenseReparam) | |||||
| train_bnn_network.set_train() | |||||
| train_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/train', 64, 1) | |||||
| test_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/test', 64, 1) | |||||
| epoch = 100 | |||||
| for i in range(epoch): | |||||
| train_loss, train_acc = train_model(train_bnn_network, network, test_set) | |||||
| valid_acc = validate_model(network, test_set) | |||||
| print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tvalidation Accuracy: {:.4f}'.format( | |||||
| i, train_loss, train_acc, valid_acc)) | |||||
| @@ -0,0 +1,149 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """test transform_to_bnn_model""" | |||||
| import numpy as np | |||||
| from mindspore import Tensor | |||||
| from mindspore.common.initializer import TruncatedNormal | |||||
| import mindspore.nn as nn | |||||
| from mindspore.nn import WithLossCell, TrainOneStepCell | |||||
| from mindspore.nn.probability import transforms | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore import context | |||||
| from dataset import create_dataset | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="GPU") | |||||
| def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): | |||||
| """weight initial for conv layer""" | |||||
| weight = weight_variable() | |||||
| return nn.Conv2d(in_channels, out_channels, | |||||
| kernel_size=kernel_size, stride=stride, padding=padding, | |||||
| weight_init=weight, has_bias=False, pad_mode="valid") | |||||
| def fc_with_initialize(input_channels, out_channels): | |||||
| """weight initial for fc layer""" | |||||
| weight = weight_variable() | |||||
| bias = weight_variable() | |||||
| return nn.Dense(input_channels, out_channels, weight, bias) | |||||
| def weight_variable(): | |||||
| """weight initial""" | |||||
| return TruncatedNormal(0.02) | |||||
| class LeNet5(nn.Cell): | |||||
| """ | |||||
| Lenet network | |||||
| Args: | |||||
| num_class (int): Num classes. Default: 10. | |||||
| Returns: | |||||
| Tensor, output tensor | |||||
| Examples: | |||||
| >>> LeNet5(num_class=10) | |||||
| """ | |||||
| def __init__(self, num_class=10): | |||||
| super(LeNet5, self).__init__() | |||||
| self.num_class = num_class | |||||
| self.conv1 = conv(1, 6, 5) | |||||
| self.conv2 = conv(6, 16, 5) | |||||
| self.fc1 = fc_with_initialize(16 * 5 * 5, 120) | |||||
| self.fc2 = fc_with_initialize(120, 84) | |||||
| self.fc3 = fc_with_initialize(84, self.num_class) | |||||
| self.relu = nn.ReLU() | |||||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||||
| self.flatten = nn.Flatten() | |||||
| self.reshape = P.Reshape() | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.conv2(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.flatten(x) | |||||
| x = self.fc1(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc2(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc3(x) | |||||
| return x | |||||
| def train_model(train_net, net, dataset): | |||||
| accs = [] | |||||
| loss_sum = 0 | |||||
| for _, data in enumerate(dataset.create_dict_iterator()): | |||||
| train_x = Tensor(data['image'].astype(np.float32)) | |||||
| label = Tensor(data['label'].astype(np.int32)) | |||||
| loss = train_net(train_x, label) | |||||
| output = net(train_x) | |||||
| log_output = P.LogSoftmax(axis=1)(output) | |||||
| acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy()) | |||||
| accs.append(acc) | |||||
| loss_sum += loss.asnumpy() | |||||
| loss_sum = loss_sum / len(accs) | |||||
| acc_mean = np.mean(accs) | |||||
| return loss_sum, acc_mean | |||||
| def validate_model(net, dataset): | |||||
| accs = [] | |||||
| for _, data in enumerate(dataset.create_dict_iterator()): | |||||
| train_x = Tensor(data['image'].astype(np.float32)) | |||||
| label = Tensor(data['label'].astype(np.int32)) | |||||
| output = net(train_x) | |||||
| log_output = P.LogSoftmax(axis=1)(output) | |||||
| acc = np.mean(log_output.asnumpy().argmax(axis=1) == label.asnumpy()) | |||||
| accs.append(acc) | |||||
| acc_mean = np.mean(accs) | |||||
| return acc_mean | |||||
| if __name__ == "__main__": | |||||
| network = LeNet5() | |||||
| criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| optimizer = nn.AdamWeightDecay(params=network.trainable_params(), learning_rate=0.0001) | |||||
| net_with_loss = WithLossCell(network, criterion) | |||||
| train_network = TrainOneStepCell(net_with_loss, optimizer) | |||||
| bnn_transformer = transforms.TransformToBNN(train_network, 60000, 0.000001) | |||||
| train_bnn_network = bnn_transformer.transform_to_bnn_model() | |||||
| train_bnn_network.set_train() | |||||
| train_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/train', 64, 1) | |||||
| test_set = create_dataset('/home/workspace/mindspore_dataset/mnist_data/test', 64, 1) | |||||
| epoch = 500 | |||||
| for i in range(epoch): | |||||
| train_loss, train_acc = train_model(train_bnn_network, network, test_set) | |||||
| valid_acc = validate_model(network, test_set) | |||||
| print('Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy: {:.4f} \tvalidation Accuracy: {:.4f}'.format( | |||||
| i, train_loss, train_acc, valid_acc)) | |||||