| @@ -113,7 +113,7 @@ def package_summary_event(data_list, step): | |||
| data = value["data"] | |||
| tag = value["name"] | |||
| logger.debug("Now process %r summary, tag = %r", summary_type, tag) | |||
| logger.debug(f"Now process {summary_type} summary, tag = {tag}") | |||
| summary_value = summary.value.add() | |||
| summary_value.tag = tag | |||
| @@ -130,7 +130,7 @@ def package_summary_event(data_list, step): | |||
| _fill_histogram_summary(tag, data, summary_value.histogram) | |||
| else: | |||
| # The data is invalid ,jump the data | |||
| logger.error("Summary type(%r) is error, tag = %r", summary_type, tag) | |||
| logger.error(f"Summary type({summary_type}) is error, tag = {tag}") | |||
| del summary.value[-1] | |||
| return summary_event | |||
| @@ -186,17 +186,17 @@ def _fill_scalar_summary(tag: str, np_value, summary): | |||
| Returns: | |||
| Summary, return scalar summary content. | |||
| """ | |||
| logger.debug("Set(%r) the scalar summary value", tag) | |||
| logger.debug(f"Set({tag}) the scalar summary value") | |||
| if np_value.size == 1: | |||
| # is scalar | |||
| summary.scalar_value = np_value.item() | |||
| return True | |||
| if np_value.size > 1: | |||
| logger.warning("The tensor is not a single scalar, tag = %r, ndim = %r, shape = %r", tag, np_value.ndim, | |||
| np_value.shape) | |||
| logger.warning( | |||
| f"The tensor is not a single scalar, tag = {tag}, ndim = {np_value.ndim}, shape = {np_value.shape}") | |||
| summary.scalar_value = next(np_value.flat).item() | |||
| return True | |||
| logger.error("There no values inside tensor, tag = %r, size = %r", tag, np_value.size) | |||
| logger.error(f"There no values inside tensor, tag = {tag}, size = {np_value.size}") | |||
| return False | |||
| @@ -212,7 +212,7 @@ def _fill_tensor_summary(tag: str, np_value, summary_tensor): | |||
| Retruns: | |||
| Summary, return tensor summary content. | |||
| """ | |||
| logger.debug("Set(%r) the tensor summary value", tag) | |||
| logger.debug(f"Set({tag}) the tensor summary value") | |||
| # get tensor dtype | |||
| tensor_dtype = _nptype_to_prototype(np_value) | |||
| summary_tensor.data_type = DataType.Value(tensor_dtype) | |||
| @@ -266,7 +266,7 @@ def _fill_histogram_summary(tag: str, np_value: np.ndarray, summary) -> None: | |||
| np_value (np.ndarray): Summary data. | |||
| summary (summary_pb2.Summary.Histogram): Summary histogram data. | |||
| """ | |||
| logger.debug("Set(%r) the histogram summary value", tag) | |||
| logger.debug(f"Set({tag}) the histogram summary value") | |||
| # Default bucket for tensor with no valid data. | |||
| ma_value = np.ma.masked_invalid(np_value) | |||
| total, valid = np_value.size, ma_value.count() | |||
| @@ -281,7 +281,7 @@ def _fill_histogram_summary(tag: str, np_value: np.ndarray, summary) -> None: | |||
| summary.count = total | |||
| summary.nan_count, summary.pos_inf_count, summary.neg_inf_count = invalids | |||
| if not valid: | |||
| logger.warning('There are no valid values in the ndarray(size=%d, shape=%d)', total, np_value.shape) | |||
| logger.warning(f'There are no valid values in the ndarray(size={total}, shape={np_value.shape})') | |||
| # summary.{min, max, sum} are 0s by default, no need to explicitly set | |||
| else: | |||
| # BUG: max of a masked array with dtype np.float16 returns inf | |||
| @@ -290,9 +290,8 @@ def _fill_histogram_summary(tag: str, np_value: np.ndarray, summary) -> None: | |||
| summary.min = ma_value.min(fill_value=np.PINF) | |||
| summary.max = ma_value.max(fill_value=np.NINF) | |||
| if summary.min < F32_MIN or summary.max > F32_MAX: | |||
| logger.warning( | |||
| 'Values(%r, %r) are too large, ' | |||
| 'you may encounter some undefined behaviours hereafter.', summary.min, summary.max) | |||
| logger.warning(f'Values({summary.min}, {summary.max}) are too large, ' | |||
| f'you may encounter some undefined behaviours hereafter.') | |||
| else: | |||
| summary.min = ma_value.min() | |||
| summary.max = ma_value.max() | |||
| @@ -327,14 +326,14 @@ def _fill_image_summary(tag: str, np_value, summary_image, input_format='NCHW'): | |||
| Returns: | |||
| Summary, return image summary content. | |||
| """ | |||
| logger.debug("Set(%r) the image summary value", tag) | |||
| logger.debug(f"Set({tag}) the image summary value") | |||
| if np_value.ndim != 4 or np_value.shape[1] not in (1, 3): | |||
| logger.error("The value is not Image, tag = %r, ndim = %r, shape=%r", tag, np_value.ndim, np_value.shape) | |||
| logger.error(f"The value is not Image, tag = {tag}, ndim = {np_value.ndim}, shape={np_value.shape}") | |||
| return False | |||
| if np_value.ndim != len(input_format): | |||
| logger.error("The tensor with dim(%r) can't convert the format(%r) because dim not same", np_value.ndim, | |||
| input_format) | |||
| logger.error( | |||
| f"The tensor with dim({np_value.ndim}) can't convert the format({input_format}) because dim not same") | |||
| return False | |||
| # convert the tensor format | |||