| @@ -111,6 +111,12 @@ class Softmax(PrimitiveWithInfer): | |||
| Outputs: | |||
| Tensor, with the same type and shape as the logits. | |||
| Examples: | |||
| >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | |||
| >>> softmax = P.Softmax() | |||
| >>> softmax(input_x) | |||
| [0.01165623, 0.03168492, 0.08612854, 0.23412167, 0.6364086] | |||
| """ | |||
| @prim_attr_register | |||
| @@ -155,6 +161,12 @@ class LogSoftmax(PrimitiveWithInfer): | |||
| Outputs: | |||
| Tensor, with the same type and shape as the logits. | |||
| Examples: | |||
| >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | |||
| >>> log_softmax = P.LogSoftmax() | |||
| >>> log_softmax(input_x) | |||
| [-4.4519143, -3.4519143, -2.4519143, -1.4519144, -0.4519144] | |||
| """ | |||
| @prim_attr_register | |||
| @@ -375,6 +387,11 @@ class Sigmoid(PrimitiveWithInfer): | |||
| Outputs: | |||
| Tensor, with the same type and shape as the input_x. | |||
| Examples: | |||
| >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | |||
| >>> sigmoid = P.Sigmoid() | |||
| >>> sigmoid(input_x) | |||
| [0.73105866, 0.880797, 0.9525742, 0.98201376, 0.9933071] | |||
| """ | |||
| @prim_attr_register | |||
| @@ -438,6 +455,12 @@ class Tanh(PrimitiveWithInfer): | |||
| Outputs: | |||
| Tensor, with the same type and shape as the input_x. | |||
| Examples: | |||
| >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32) | |||
| >>> tanh = P.Tanh() | |||
| >>> tanh(input_x) | |||
| [0.7615941, 0.9640276, 0.9950548, 0.9993293, 0.99990916] | |||
| """ | |||
| @prim_attr_register | |||
| @@ -547,6 +570,15 @@ class BatchNorm(PrimitiveWithInfer): | |||
| - **reserve_space_1** (Tensor) - Tensor of shape :math:`(C,)`. | |||
| - **reserve_space_2** (Tensor) - Tensor of shape :math:`(C,)`. | |||
| - **reserve_space_3** (Tensor) - Tensor of shape :math:`(C,)`. | |||
| Examples: | |||
| >>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32) | |||
| >>> scale = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> bias = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> mean = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> variance = Tensor(np.ones([64]), mindspore.float32) | |||
| >>> batch_norm = P.BatchNorm() | |||
| >>> output = batch_norm(input_x, scale, bias, mean, variance) | |||
| """ | |||
| @prim_attr_register | |||
| @@ -1189,6 +1221,12 @@ class BiasAdd(PrimitiveWithInfer): | |||
| Outputs: | |||
| Tensor, with the same shape and type as `input_x`. | |||
| Examples: | |||
| >>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32) | |||
| >>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32) | |||
| >>> bias_add = P.BiasAdd() | |||
| >>> bias_add(input_x, bias) | |||
| """ | |||
| @prim_attr_register | |||
| @@ -1277,7 +1315,12 @@ class SoftmaxCrossEntropyWithLogits(PrimitiveWithInfer): | |||
| Tuple of 2 Tensor, the loss shape is `(N,)`, and the dlogits with the same shape as `logits`. | |||
| Examples: | |||
| Please refer to the usage in nn.SoftmaxCrossEntropyWithLogits source code. | |||
| >>> logits = Tensor([[2, 4, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32) | |||
| >>> labels = Tensor([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0]], mindspore.float32) | |||
| >>> softmax_cross = P.SoftmaxCrossEntropyWithLogits() | |||
| >>> loss, backprop = softmax_cross(logits, labels) | |||
| ([0.5899297, 0.52374405], [[0.02760027, 0.20393994, 0.01015357, 0.20393994, -0.44563377], | |||
| [0.08015892, 0.02948882, 0.08015892, -0.4077012, 0.21789455]]) | |||
| """ | |||
| @prim_attr_register | |||
| @@ -1421,6 +1464,13 @@ class SmoothL1Loss(PrimitiveWithInfer): | |||
| Outputs: | |||
| Tensor, with the same type and shape as `prediction`. | |||
| Examples: | |||
| >>> loss = P.SmoothL1Loss() | |||
| >>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32) | |||
| >>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32) | |||
| >>> loss(input_data, target_data) | |||
| [0, 0, 0.5] | |||
| """ | |||
| @prim_attr_register | |||