Merge pull request !3116 from xulei/sentence_piece0715tags/v0.6.0-beta
| @@ -0,0 +1,25 @@ | |||
| if (WIN32) | |||
| set(sentencepiece_CXXFLAGS "-D_FORTIFY_SOURCE=2 -O2 -Wno-unused-result -Wno-stringop-overflow -Wno-format-extra-args -Wno-format") | |||
| set(sentencepiece_CFLAGS "-D_FORTIFY_SOURCE=2 -O2") | |||
| mindspore_add_pkg(sentencepiece | |||
| VER 0.1.92 | |||
| LIBS sentencepiece sentencepiece_train | |||
| URL https://github.com/google/sentencepiece/archive/v0.1.92.tar.gz | |||
| CMAKE_OPTION -DCMAKE_BUILD_TYPE=Release -DSPM_USE_BUILTIN_PROTOBUF=ON | |||
| MD5 5dfd2241914b5598a68b2a8542ed8e91 | |||
| ) | |||
| else () | |||
| set(sentencepiece_CXXFLAGS "-D_FORTIFY_SOURCE=2 -O2 -Wno-unused-result -Wno-sign-compare") | |||
| set(sentencepiece_CFLAGS "-D_FORTIFY_SOURCE=2 -O2") | |||
| mindspore_add_pkg(sentencepiece | |||
| VER 0.1.92 | |||
| LIBS sentencepiece sentencepiece_train | |||
| URL https://github.com/google/sentencepiece/archive/v0.1.92.tar.gz | |||
| CMAKE_OPTION -DCMAKE_BUILD_TYPE=Release -DSPM_USE_BUILTIN_PROTOBUF=OFF -DSPM_ENABLE_SHARED=OFF -DPROTOBUF_INC=${protobuf_INC} | |||
| MD5 5dfd2241914b5598a68b2a8542ed8e91 | |||
| PATCHES ${CMAKE_SOURCE_DIR}/third_party/patch/sentencepiece/sentencepiece.patch001 | |||
| ) | |||
| endif () | |||
| include_directories(${sentencepiece_INC}) | |||
| add_library(mindspore::sentencepiece ALIAS sentencepiece::sentencepiece) | |||
| add_library(mindspore::sentencepiece_train ALIAS sentencepiece::sentencepiece_train) | |||
| @@ -75,6 +75,7 @@ if (ENABLE_MINDDATA) | |||
| include(${CMAKE_SOURCE_DIR}/cmake/external_libs/sqlite.cmake) | |||
| include(${CMAKE_SOURCE_DIR}/cmake/external_libs/tinyxml2.cmake) | |||
| include(${CMAKE_SOURCE_DIR}/cmake/external_libs/cppjieba.cmake) | |||
| include(${CMAKE_SOURCE_DIR}/cmake/external_libs/sentencepiece.cmake) | |||
| endif() | |||
| include(${CMAKE_SOURCE_DIR}/cmake/external_libs/gtest.cmake) | |||
| @@ -40,6 +40,7 @@ if (CMAKE_SYSTEM_NAME MATCHES "Windows") | |||
| set(jpeg_turbo_LIBPATH ${jpeg_turbo_LIBPATH}/../bin/) | |||
| set(sqlite_LIBPATH ${sqlite_LIBPATH}/../bin/) | |||
| set(tinyxml2_LIBPATH ${tinyxml2_LIBPATH}/../bin/) | |||
| set(sentencepiece_LIBPATH ${sentencepiece_LIBPATH}/../bin/) | |||
| else () | |||
| set(INSTALL_LIB_DIR "lib") | |||
| endif () | |||
| @@ -91,6 +92,14 @@ if (ENABLE_MINDDATA) | |||
| DESTINATION ${INSTALL_LIB_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| file(GLOB_RECURSE SENTENCEPIECE_LIB_LIST | |||
| ${sentencepiece_LIBPATH}/libsentencepiece* | |||
| ) | |||
| install( | |||
| FILES ${SENTENCEPIECE_LIB_LIST} | |||
| DESTINATION ${INSTALL_LIB_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| if (CMAKE_SYSTEM_NAME MATCHES "Windows") | |||
| message("icu4c does not support windows system temporarily") | |||
| else() | |||
| @@ -128,7 +128,7 @@ else() | |||
| target_link_libraries(_c_dataengine PRIVATE mindspore::pybind11_module -ldl mindspore::protobuf ${SECUREC_LIBRARY}) | |||
| endif() | |||
| target_link_libraries(_c_dataengine PUBLIC mindspore::jpeg_turbo mindspore::opencv_core mindspore::opencv_imgcodecs | |||
| mindspore::opencv_imgproc mindspore::tinyxml2 ${ICU_LIB}) | |||
| mindspore::opencv_imgproc mindspore::tinyxml2 mindspore::sentencepiece mindspore::sentencepiece_train ${ICU_LIB}) | |||
| if (ENABLE_GPUQUE) | |||
| target_link_libraries(_c_dataengine PRIVATE gpu_queue | |||
| ${CUDNN_PATH}/lib64/libcudnn.so | |||
| @@ -87,7 +87,8 @@ static std::unordered_map<uint32_t, pFunction> g_parse_op_func_ = { | |||
| {kTextFile, &DEPipeline::ParseTextFileOp}, | |||
| {kBuildVocab, &DEPipeline::ParseBuildVocabOp}, | |||
| {kClue, &DEPipeline::ParseClueOp}, | |||
| {kEpochCtrl, &DEPipeline::ParseEpochCtrlOp}}; | |||
| {kEpochCtrl, &DEPipeline::ParseEpochCtrlOp}, | |||
| {kSentencePieceVocab, &DEPipeline::ParseBuildSentencePieceVocabOp}}; | |||
| DEPipeline::DEPipeline() : iterator_(nullptr) { | |||
| try { | |||
| @@ -1710,6 +1711,41 @@ Status DEPipeline::ParseBuildVocabOp(const py::dict &args, std::shared_ptr<Datas | |||
| return Status::OK(); | |||
| } | |||
| Status DEPipeline::ParseBuildSentencePieceVocabOp(const py::dict &args, std::shared_ptr<DatasetOp> *top, | |||
| std::shared_ptr<DatasetOp> *bottom) { | |||
| std::shared_ptr<BuildSentencePieceVocabOp::Builder> builder = std::make_shared<BuildSentencePieceVocabOp::Builder>(); | |||
| for (auto arg : args) { | |||
| std::string key = py::str(arg.first); | |||
| py::handle value = arg.second; | |||
| if (!value.is_none()) { | |||
| if (key == "vocab_size") { | |||
| builder->SetVocabSize(ToInt(value)); | |||
| } else if (key == "character_coverage") { | |||
| (void)builder->SetCharacterCoverage(ToFloat(value)); | |||
| } else if (key == "params") { | |||
| std::unordered_map<std::string, std::string> params; | |||
| for (auto param : py::reinterpret_borrow<py::dict>(value)) { | |||
| std::string param_key = py::reinterpret_borrow<py::str>(param.first); | |||
| if (param_key == "input" || param_key == "vocab_size" || param_key == "model_prefix" || | |||
| param_key == "character_coverage" || param_key == "model_type") { | |||
| continue; | |||
| } | |||
| params[param_key] = py::reinterpret_borrow<py::str>(param.second); | |||
| } | |||
| (void)builder->SetParams(params); | |||
| } else if (key == "vocab") { | |||
| (void)builder->SetVocab(value.cast<std::shared_ptr<SentencePieceVocab>>()); | |||
| } else if (key == "model_type") { | |||
| (void)builder->SetModelType(value.cast<SentencePieceModel>()); | |||
| } | |||
| } | |||
| } | |||
| std::shared_ptr<BuildSentencePieceVocabOp> op; | |||
| RETURN_IF_NOT_OK(builder->Build(&op)); | |||
| *top = op; | |||
| return Status::OK(); | |||
| } | |||
| Status DEPipeline::ParseClueOp(const py::dict &args, std::shared_ptr<DatasetOp> *top, | |||
| std::shared_ptr<DatasetOp> *bottom) { | |||
| std::vector<std::string> files_list; | |||
| @@ -71,7 +71,8 @@ enum OpName { | |||
| kTextFile, | |||
| kBuildVocab, | |||
| kClue, | |||
| kEpochCtrl | |||
| kEpochCtrl, | |||
| kSentencePieceVocab, | |||
| }; | |||
| // The C++ binder class that we expose to the python script. | |||
| @@ -195,6 +196,8 @@ class DEPipeline { | |||
| Status ParseBuildVocabOp(const py::dict &args, std::shared_ptr<DatasetOp> *top, std::shared_ptr<DatasetOp> *bottom); | |||
| Status StopSend(); | |||
| Status ParseBuildSentencePieceVocabOp(const py::dict &args, std::shared_ptr<DatasetOp> *top, | |||
| std::shared_ptr<DatasetOp> *bottom); | |||
| Status ParseClueOp(const py::dict &args, std::shared_ptr<DatasetOp> *top, std::shared_ptr<DatasetOp> *bottom); | |||
| @@ -88,7 +88,9 @@ | |||
| #include "minddata/dataset/text/kernels/to_number_op.h" | |||
| #include "minddata/dataset/text/kernels/unicode_char_tokenizer_op.h" | |||
| #include "minddata/dataset/text/kernels/wordpiece_tokenizer_op.h" | |||
| #include "minddata/dataset/text/kernels/sentence_piece_tokenizer_op.h" | |||
| #include "minddata/dataset/text/vocab.h" | |||
| #include "minddata/dataset/text/sentence_piece_vocab.h" | |||
| #include "minddata/dataset/util/random.h" | |||
| #include "minddata/mindrecord/include/shard_distributed_sample.h" | |||
| #include "minddata/mindrecord/include/shard_operator.h" | |||
| @@ -684,6 +686,15 @@ void bindTokenizerOps(py::module *m) { | |||
| (void)py::class_<SlidingWindowOp, TensorOp, std::shared_ptr<SlidingWindowOp>>( | |||
| *m, "SlidingWindowOp", "TensorOp to apply sliding window to a 1-D Tensor.") | |||
| .def(py::init<uint32_t, int32_t>(), py::arg("width"), py::arg("axis")); | |||
| (void)py::class_<SentencePieceTokenizerOp, TensorOp, std::shared_ptr<SentencePieceTokenizerOp>>( | |||
| *m, "SentencePieceTokenizerOp", "Tokenize scalar token or 1-D tokens to tokens by sentence piece.") | |||
| .def(py::init<std::shared_ptr<SentencePieceVocab> &, const SPieceTokenizerLoadType, const SPieceTokenizerOutType>(), | |||
| py::arg("vocab"), py::arg("load_type") = SPieceTokenizerLoadType::kModel, | |||
| py::arg("out_type") = SPieceTokenizerOutType::kString) | |||
| .def( | |||
| py::init<const std::string &, const std::string &, const SPieceTokenizerLoadType, const SPieceTokenizerOutType>(), | |||
| py::arg("model_path"), py::arg("model_filename"), py::arg("load_type") = SPieceTokenizerLoadType::kFile, | |||
| py::arg("out_type") = SPieceTokenizerOutType::kString); | |||
| } | |||
| void bindDependIcuTokenizerOps(py::module *m) { | |||
| @@ -839,6 +850,33 @@ void bindVocabObjects(py::module *m) { | |||
| THROW_IF_ERROR(Vocab::BuildFromPyDict(words, &v)); | |||
| return v; | |||
| }); | |||
| (void)py::class_<SentencePieceVocab, std::shared_ptr<SentencePieceVocab>>(*m, "SentencePieceVocab") | |||
| .def(py::init<>()) | |||
| .def_static("from_file", | |||
| [](const py::list &paths, const int vocab_size, const float character_coverage, | |||
| const SentencePieceModel model_type, const py::dict ¶ms) { | |||
| std::shared_ptr<SentencePieceVocab> v; | |||
| std::vector<std::string> path_list; | |||
| for (auto path : paths) { | |||
| path_list.emplace_back(py::str(path)); | |||
| } | |||
| std::unordered_map<std::string, std::string> param_map; | |||
| for (auto param : params) { | |||
| std::string key = py::reinterpret_borrow<py::str>(param.first); | |||
| if (key == "input" || key == "vocab_size" || key == "model_prefix" || key == "character_coverage" || | |||
| key == "model_type") { | |||
| continue; | |||
| } | |||
| param_map[key] = py::reinterpret_borrow<py::str>(param.second); | |||
| } | |||
| THROW_IF_ERROR(SentencePieceVocab::BuildFromFile(path_list, vocab_size, character_coverage, | |||
| model_type, param_map, &v)); | |||
| return v; | |||
| }) | |||
| .def_static("save_model", | |||
| [](const std::shared_ptr<SentencePieceVocab> *vocab, std::string path, std::string filename) { | |||
| THROW_IF_ERROR(SentencePieceVocab::SaveModel(vocab, path, filename)); | |||
| }); | |||
| } | |||
| void bindGraphData(py::module *m) { | |||
| @@ -998,6 +1036,7 @@ PYBIND11_MODULE(_c_dataengine, m) { | |||
| .value("CIFAR100", OpName::kCifar100) | |||
| .value("RANDOMDATA", OpName::kRandomData) | |||
| .value("BUILDVOCAB", OpName::kBuildVocab) | |||
| .value("SENTENCEPIECEVOCAB", OpName::kSentencePieceVocab) | |||
| .value("CELEBA", OpName::kCelebA) | |||
| .value("TEXTFILE", OpName::kTextFile) | |||
| .value("CLUE", OpName::kClue) | |||
| @@ -1032,6 +1071,24 @@ PYBIND11_MODULE(_c_dataengine, m) { | |||
| .value("DE_BORDER_REFLECT", BorderType::kReflect) | |||
| .value("DE_BORDER_SYMMETRIC", BorderType::kSymmetric) | |||
| .export_values(); | |||
| (void)py::enum_<SentencePieceModel>(m, "SentencePieceModel", py::arithmetic()) | |||
| .value("DE_SENTENCE_PIECE_UNIGRAM", SentencePieceModel::kUnigram) | |||
| .value("DE_SENTENCE_PIECE_BPE", SentencePieceModel::kBpe) | |||
| .value("DE_SENTENCE_PIECE_CHAR", SentencePieceModel::kChar) | |||
| .value("DE_SENTENCE_PIECE_WORD", SentencePieceModel::kWord) | |||
| .export_values(); | |||
| (void)py::enum_<SPieceTokenizerOutType>(m, "SPieceTokenizerOutType", py::arithmetic()) | |||
| .value("DE_SPIECE_TOKENIZER_OUTTYPE_KString", SPieceTokenizerOutType::kString) | |||
| .value("DE_SPIECE_TOKENIZER_OUTTYPE_KINT", SPieceTokenizerOutType::kInt) | |||
| .export_values(); | |||
| (void)py::enum_<SPieceTokenizerLoadType>(m, "SPieceTokenizerLoadType", py::arithmetic()) | |||
| .value("DE_SPIECE_TOKENIZER_LOAD_KFILE", SPieceTokenizerLoadType::kFile) | |||
| .value("DE_SPIECE_TOKENIZER_LOAD_KMODEL", SPieceTokenizerLoadType::kModel) | |||
| .export_values(); | |||
| bindDEPipeline(&m); | |||
| bindTensor(&m); | |||
| bindTensorOps1(&m); | |||
| @@ -33,6 +33,7 @@ | |||
| #include "minddata/dataset/engine/datasetops/filter_op.h" | |||
| #include "minddata/dataset/engine/datasetops/source/generator_op.h" | |||
| #include "minddata/dataset/engine/datasetops/build_vocab_op.h" | |||
| #include "minddata/dataset/engine/datasetops/build_sentence_piece_vocab_op.h" | |||
| #endif | |||
| #include "minddata/dataset/engine/datasetops/batch_op.h" | |||
| @@ -32,6 +32,7 @@ if (ENABLE_PYTHON) | |||
| barrier_op.cc | |||
| filter_op.cc | |||
| build_vocab_op.cc | |||
| build_sentence_piece_vocab_op.cc | |||
| ) | |||
| endif() | |||
| @@ -0,0 +1,193 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "minddata/dataset/engine/datasetops/build_sentence_piece_vocab_op.h" | |||
| #include <iomanip> | |||
| #include "minddata/dataset/core/config_manager.h" | |||
| #include "minddata/dataset/engine/opt/pass.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| BuildSentencePieceVocabOp::BuildSentencePieceVocabOp(std::shared_ptr<SentencePieceVocab> vocab, | |||
| std::vector<std::string> col_names, uint32_t vocab_size, | |||
| float character_coverage, SentencePieceModel model_type, | |||
| const std::unordered_map<std::string, std::string> ¶ms, | |||
| int32_t op_conn_size) | |||
| : PipelineOp(op_conn_size), | |||
| vocab_size_(vocab_size), | |||
| vocab_(vocab), | |||
| col_names_(col_names), | |||
| character_coverage_(character_coverage), | |||
| model_type_(model_type), | |||
| params_(params), | |||
| col_id_(0) { | |||
| sentence_queue_ = std::make_unique<Queue<TensorRow>>(op_conn_size); | |||
| read_done_ = false; | |||
| ret_status_ = Status::OK(); | |||
| } | |||
| Status BuildSentencePieceVocabOp::operator()() { | |||
| RETURN_UNEXPECTED_IF_NULL(tree_); | |||
| RETURN_IF_NOT_OK(sentence_queue_->Register(tree_->AllTasks())); | |||
| RETURN_IF_NOT_OK( | |||
| tree_->AllTasks()->CreateAsyncTask("sentenceTask", std::bind(&BuildSentencePieceVocabOp::SentenceThread, this))); | |||
| TaskManager::FindMe()->Post(); | |||
| child_iterator_ = std::make_unique<ChildIterator>(this, 0, 0); | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| bool eoe_warning = false; // give out warning if receive more than 1 eoe | |||
| while (child_iterator_->eof_handled() == false) { | |||
| while (new_row.empty() == false) { | |||
| RETURN_IF_NOT_OK(sentence_queue_->EmplaceBack(new_row)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| CHECK_FAIL_RETURN_UNEXPECTED(!eoe_warning, "no op should be after from_dataset (repeat detected)"); | |||
| eoe_warning = true; | |||
| } | |||
| // add empty tensorRow for quit | |||
| TensorRow empty_row = {}; | |||
| sentence_queue_->EmplaceBack(empty_row); | |||
| return Status::OK(); | |||
| } | |||
| Status BuildSentencePieceVocabOp::SentenceThread() { | |||
| TaskManager::FindMe()->Post(); | |||
| if (col_names_.empty() == true) { | |||
| auto itr = column_name_id_map_.find("text"); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(itr != column_name_id_map_.end(), | |||
| "'text' column doesn't exist when column name is empty"); | |||
| col_id_ = itr->second; | |||
| } else { | |||
| auto itr = column_name_id_map_.find(col_names_[0]); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(itr != column_name_id_map_.end(), col_names_[0] + "column doesn't exist"); | |||
| col_id_ = itr->second; | |||
| } | |||
| std::unique_ptr<DatasetSentenceIterator> sentence_iter = std::make_unique<DatasetSentenceIterator>(this); | |||
| std::string model_proto; | |||
| sentencepiece::util::Status s_status = | |||
| sentencepiece::SentencePieceTrainer::Train(BuildParams(), sentence_iter.get(), &model_proto); | |||
| if (!s_status.ok()) { | |||
| return Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, s_status.message()); | |||
| } else { | |||
| if (vocab_ == nullptr) { | |||
| return Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, "sentencepiece vocab ptr must not be nullptr"); | |||
| } | |||
| vocab_->set_model_proto(model_proto); | |||
| } | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE))); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF))); | |||
| return Status::OK(); | |||
| } | |||
| std::unordered_map<std::string, std::string> BuildSentencePieceVocabOp::BuildParams() { | |||
| std::unordered_map<std::string, std::string> ret_params; | |||
| ret_params["vocab_size"] = std::to_string(vocab_size_); | |||
| ret_params["character_coverage"] = std::to_string(character_coverage_); | |||
| if (model_type_ == SentencePieceModel::kBpe) { | |||
| ret_params["model_type"] = "BPE"; | |||
| } else if (model_type_ == SentencePieceModel::kChar) { | |||
| ret_params["model_type"] = "CHAR"; | |||
| } else if (model_type_ == SentencePieceModel::kWord) { | |||
| ret_params["model_type"] = "WORD"; | |||
| } else { | |||
| ret_params["model_type"] = "UNIGRAM"; | |||
| } | |||
| // filter some params that set by function param | |||
| // filter model_prefix that must be empty | |||
| for (auto param : params_) { | |||
| std::string key = param.first; | |||
| if (key == "input" || key == "vocab_size" || key == "model_prefix" || key == "character_coverage" || | |||
| key == "model_type") { | |||
| continue; | |||
| } | |||
| ret_params[key] = param.second; | |||
| } | |||
| ret_params["model_prefix"] = ""; | |||
| ret_params["minloglevel"] = "1"; | |||
| return ret_params; | |||
| } | |||
| bool BuildSentencePieceVocabOp::Done() { return read_done_; } | |||
| void BuildSentencePieceVocabOp::Next(std::string *sentence) { | |||
| TensorRow new_row; | |||
| Status s = sentence_queue_->PopFront(&new_row); | |||
| if (s.IsError()) { | |||
| read_done_ = true; | |||
| ret_status_ = s; | |||
| return; | |||
| } | |||
| if (new_row.empty() == true) { | |||
| read_done_ = true; | |||
| ret_status_ = Status::OK(); | |||
| return; | |||
| } | |||
| if (new_row[col_id_]->type().IsNumeric() || new_row[col_id_]->Rank() > 1) { | |||
| ret_status_ = Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, | |||
| "for dataset only words on string columns or must bu scalar"); | |||
| read_done_ = true; | |||
| return; | |||
| } | |||
| std::string_view sentence_v; | |||
| new_row[col_id_]->GetItemAt(&sentence_v, {}); | |||
| std::string st{sentence_v}; | |||
| *sentence = st; | |||
| ret_status_ = Status::OK(); | |||
| } | |||
| // Pre-Visitor accept method for NodePass | |||
| Status BuildSentencePieceVocabOp::PreAccept(NodePass *p, bool *modified) { | |||
| // Downcast shared pointer then call the pre-visitation | |||
| return p->PreRunOnNode(shared_from_base<BuildSentencePieceVocabOp>(), modified); | |||
| } | |||
| Status BuildSentencePieceVocabOp::Builder::Build(std::shared_ptr<BuildSentencePieceVocabOp> *op) { | |||
| (*op) = std::make_shared<BuildSentencePieceVocabOp>(builder_vocab_, builder_col_names_, builder_vocab_size_, | |||
| builder_character_coverage_, builder_model_type_, builder_params_, | |||
| builder_connector_size_); | |||
| return Status::OK(); | |||
| } | |||
| BuildSentencePieceVocabOp::Builder::Builder() { | |||
| std::shared_ptr<ConfigManager> cfg = GlobalContext::config_manager(); | |||
| builder_connector_size_ = cfg->op_connector_size(); | |||
| } | |||
| BuildSentencePieceVocabOp::DatasetSentenceIterator::DatasetSentenceIterator(BuildSentencePieceVocabOp *s_p_vocab_ptr) | |||
| : s_p_vocab_ptr_(s_p_vocab_ptr) {} | |||
| bool BuildSentencePieceVocabOp::DatasetSentenceIterator::done() const { | |||
| if (s_p_vocab_ptr_ == nullptr) { | |||
| return true; | |||
| } | |||
| return s_p_vocab_ptr_->Done(); | |||
| } | |||
| void BuildSentencePieceVocabOp::DatasetSentenceIterator::Next() { | |||
| if (s_p_vocab_ptr_ == nullptr) { | |||
| return; | |||
| } | |||
| s_p_vocab_ptr_->Next(&value_); | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,186 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef DATASET_ENGINE_DATASETOPS_BUILD_SENTENCE_VOCAB_OP_H_ | |||
| #define DATASET_ENGINE_DATASETOPS_BUILD_SENTENCE_VOCAB_OP_H_ | |||
| #include <sentencepiece_trainer.h> | |||
| #include <sentencepiece_processor.h> | |||
| #include <vector> | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include <string> | |||
| #include <utility> | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/engine/dataset_iterator.h" | |||
| #include "minddata/dataset/engine/datasetops/pipeline_op.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| #include "minddata/dataset/util/queue.h" | |||
| #include "minddata/dataset/text/sentence_piece_vocab.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| namespace py = pybind11; | |||
| class BuildSentencePieceVocabOp : public PipelineOp { | |||
| public: | |||
| class Builder { | |||
| public: | |||
| Builder(); | |||
| // Destructor. | |||
| ~Builder() = default; | |||
| // Setter method | |||
| // @param uint32_t size | |||
| // @return Builder setter method returns reference to the builder. | |||
| Builder &SetOpConnectorSize(uint32_t size) { | |||
| builder_connector_size_ = size; | |||
| return *this; | |||
| } | |||
| // Setter method | |||
| // @param uint32_t size | |||
| // @return Builder & reference to builder class object | |||
| Builder &SetVocabSize(uint32_t size) { | |||
| builder_vocab_size_ = size; | |||
| return *this; | |||
| } | |||
| // Setter method | |||
| // @param float charactor corverage - to determine the minimum symbols | |||
| // @return Builder & reference to builder class object | |||
| Builder &SetCharacterCoverage(float character_coverage) { | |||
| builder_character_coverage_ = character_coverage; | |||
| return *this; | |||
| } | |||
| // Setter method | |||
| // @param SentencePieceModel model_type - model algorithm | |||
| // @return Builder & reference to builder class object | |||
| Builder &SetModelType(SentencePieceModel model_type) { | |||
| builder_model_type_ = model_type; | |||
| return *this; | |||
| } | |||
| // Setter method | |||
| // @param std::unordered_map<std::string, std::string> params | |||
| // @return Builder & reference to builder class object | |||
| Builder &SetParams(std::unordered_map<std::string, std::string> params) { | |||
| builder_params_ = params; | |||
| return *this; | |||
| } | |||
| // Setter method | |||
| // @param std::shared_ptr<SentencePieceVocab> vocab | |||
| // @return Builder & reference to builder class object | |||
| Builder &SetVocab(std::shared_ptr<SentencePieceVocab> vocab) { | |||
| builder_vocab_ = vocab; | |||
| return *this; | |||
| } | |||
| // set columns names | |||
| // @param const std::vector<std::string> & col_names - name of columns to get words | |||
| // @return Builder & reference to builder class object | |||
| Builder &SetColumnNames(const std::vector<std::string> &col_names) { | |||
| builder_col_names_ = col_names; | |||
| return *this; | |||
| } | |||
| // The builder "build" method creates the final object. | |||
| // @param std::shared_ptr<BuildVocabOp> *op - DatasetOp | |||
| // @return - The error code return | |||
| Status Build(std::shared_ptr<BuildSentencePieceVocabOp> *op); | |||
| private: | |||
| uint32_t builder_connector_size_; | |||
| uint32_t builder_vocab_size_; | |||
| float builder_character_coverage_; | |||
| SentencePieceModel builder_model_type_; | |||
| std::unordered_map<std::string, std::string> builder_params_; | |||
| std::vector<std::string> builder_col_names_; | |||
| std::shared_ptr<SentencePieceVocab> builder_vocab_; | |||
| }; | |||
| public: | |||
| class DatasetSentenceIterator : public sentencepiece::SentenceIterator { | |||
| public: | |||
| explicit DatasetSentenceIterator(BuildSentencePieceVocabOp *s_p_vocab_ptr); | |||
| ~DatasetSentenceIterator() {} | |||
| bool done() const override; | |||
| void Next() override; | |||
| const std::string &value() const override { return value_; } | |||
| sentencepiece::util::Status status() const override { return sentencepiece::util::Status(); } | |||
| private: | |||
| std::string value_; | |||
| BuildSentencePieceVocabOp *s_p_vocab_ptr_; | |||
| }; | |||
| BuildSentencePieceVocabOp(std::shared_ptr<SentencePieceVocab> vocab, std::vector<std::string> col_names, | |||
| uint32_t vocab_size, float character_coverage, SentencePieceModel model_type, | |||
| const std::unordered_map<std::string, std::string> ¶ms, int32_t op_conn_size); | |||
| ~BuildSentencePieceVocabOp() = default; | |||
| // the thread for sentence train | |||
| Status SentenceThread(); | |||
| Status EofReceived(int32_t) override { return Status::OK(); } | |||
| Status EoeReceived(int32_t) override { return Status::OK(); } | |||
| Status operator()() override; | |||
| // Getter | |||
| // @return the number of workers | |||
| int32_t num_producers() const override { return 1; } | |||
| // Getter | |||
| // @return the number of threads consuming from the previous Connector | |||
| int32_t num_consumers() const override { return 1; } | |||
| Status Reset() override { RETURN_STATUS_UNEXPECTED("Reset shouldn't be called in BuildSentencePieceVocabOp"); } | |||
| // build the input params for sentence api | |||
| std::unordered_map<std::string, std::string> BuildParams(); | |||
| bool Done(); | |||
| void Next(std::string *sentence); | |||
| /// \param[in] p The node to visit | |||
| /// \param[out] modified Indicator if the node was modified | |||
| /// \return Status of the node visit | |||
| Status PreAccept(NodePass *p, bool *modified) override; | |||
| private: | |||
| bool read_done_; | |||
| Status ret_status_; | |||
| uint32_t vocab_size_; | |||
| float character_coverage_; | |||
| SentencePieceModel model_type_; | |||
| std::unordered_map<std::string, std::string> params_; | |||
| std::shared_ptr<SentencePieceVocab> vocab_; | |||
| std::vector<std::string> col_names_; | |||
| uint32_t col_id_; | |||
| std::unique_ptr<ChildIterator> child_iterator_; // child iterator for fetching TensorRows 1 by 1 | |||
| std::unique_ptr<Queue<TensorRow>> sentence_queue_; // master thread assigns each worker TensorRow via this | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // DATASET_ENGINE_DATASETOPS_BUILD_SENTENCE_VOCAB_OP_H_ | |||
| @@ -17,6 +17,7 @@ | |||
| #include "minddata/dataset/engine/opt/pass.h" | |||
| #include "minddata/dataset/engine/datasetops/batch_op.h" | |||
| #include "minddata/dataset/engine/datasetops/build_vocab_op.h" | |||
| #include "minddata/dataset/engine/datasetops/build_sentence_piece_vocab_op.h" | |||
| #include "minddata/dataset/engine/datasetops/cache_op.h" | |||
| #include "minddata/dataset/engine/datasetops/cache_merge_op.h" | |||
| #include "minddata/dataset/engine/datasetops/cache_lookup_op.h" | |||
| @@ -261,5 +262,10 @@ Status NodePass::PreRunOnNode(std::shared_ptr<BuildVocabOp> node, bool *modified | |||
| // Fallback to base class visitor by default | |||
| return PreRunOnNode(std::static_pointer_cast<DatasetOp>(node), modified); | |||
| } | |||
| Status NodePass::PreRunOnNode(std::shared_ptr<BuildSentencePieceVocabOp> node, bool *modified) { | |||
| // Fallback to base class visitor by default | |||
| return PreRunOnNode(std::static_pointer_cast<DatasetOp>(node), modified); | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -81,6 +81,8 @@ class EpochCtrlOp; | |||
| class BuildVocabOp; | |||
| class BuildSentencePieceVocabOp; | |||
| // The base class Pass is the basic unit of tree transformation. | |||
| // The actual implementation of the passes will be derived from here. | |||
| class Pass : public std::enable_shared_from_this<Pass> { | |||
| @@ -206,6 +208,8 @@ class NodePass : public Pass { | |||
| virtual Status PreRunOnNode(std::shared_ptr<BuildVocabOp> node, bool *modified); | |||
| virtual Status PreRunOnNode(std::shared_ptr<BuildSentencePieceVocabOp> node, bool *modified); | |||
| private: | |||
| // Helper function to perform DFS visit | |||
| Status DFSNodeVisit(std::shared_ptr<DatasetOp> node, bool *modified); | |||
| @@ -37,6 +37,16 @@ Status InjectionPass::InjectionFinder::PreRunOnNode(std::shared_ptr<BuildVocabOp | |||
| } | |||
| } | |||
| // Performs finder work for BuildSentencePieceVocabOp that has special rules about epoch control injection | |||
| Status InjectionPass::InjectionFinder::PreRunOnNode(std::shared_ptr<BuildSentencePieceVocabOp> node, bool *modified) { | |||
| if (injection_pass_) { | |||
| injection_pass_->epoch_ctrl_bypass_ = true; | |||
| return Status::OK(); | |||
| } else { | |||
| RETURN_STATUS_UNEXPECTED("Missing outer injection pass object from inside InjectionFinder!"); | |||
| } | |||
| } | |||
| // Temporary code to prevent the injection of epoch control when cache op is present | |||
| // Remove this code in cache op phase 2 | |||
| Status InjectionPass::InjectionFinder::PreRunOnNode(std::shared_ptr<CacheOp> node, bool *modified) { | |||
| @@ -45,6 +45,12 @@ class InjectionPass : public TreePass { | |||
| /// \return Status The error code return | |||
| Status PreRunOnNode(std::shared_ptr<BuildVocabOp> node, bool *modified) override; | |||
| /// \brief Performs finder work for BuildSentencePieceVocabOp that has special rules about epoch control injection. | |||
| /// \param[in] node The node being visited | |||
| /// \param[inout] modified Indicator if the node was changed at all | |||
| /// \return Status The error code return | |||
| Status PreRunOnNode(std::shared_ptr<BuildSentencePieceVocabOp> node, bool *modified) override; | |||
| /// \brief Temporary code to prevent the injection of epoch control when cache op is present. | |||
| /// Remove this code in cache op phase 2 | |||
| /// \param[in] node The node being visited | |||
| @@ -136,6 +136,7 @@ constexpr char kRandomChoiceOp[] = "RandomChoiceOp"; | |||
| constexpr char kRandomApplyOp[] = "RandomApplyOp"; | |||
| constexpr char kComposeOp[] = "ComposeOp"; | |||
| constexpr char kRandomSelectSubpolicyOp[] = "RandomSelectSubpolicyOp"; | |||
| constexpr char kSentencepieceTokenizerOp[] = "SentencepieceTokenizerOp"; | |||
| // data | |||
| constexpr char kConcatenateOp[] = "kConcatenateOp"; | |||
| @@ -4,6 +4,7 @@ file(GLOB _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc") | |||
| set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD) | |||
| add_library(text OBJECT | |||
| vocab.cc | |||
| sentence_piece_vocab.cc | |||
| ) | |||
| add_dependencies(text text-kernels) | |||
| @@ -21,5 +21,6 @@ add_library(text-kernels OBJECT | |||
| wordpiece_tokenizer_op.cc | |||
| truncate_sequence_pair_op.cc | |||
| to_number_op.cc | |||
| sentence_piece_tokenizer_op.cc | |||
| ${ICU_DEPEND_FILES} | |||
| ) | |||
| @@ -0,0 +1,99 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "minddata/dataset/text/kernels/sentence_piece_tokenizer_op.h" | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "common/utils.h" | |||
| #include "minddata/dataset/util/path.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| SentencePieceTokenizerOp::SentencePieceTokenizerOp(const std::shared_ptr<SentencePieceVocab> vocab, | |||
| const SPieceTokenizerLoadType load_type, | |||
| const SPieceTokenizerOutType out_type) | |||
| : vocab_(vocab), load_type_(load_type), out_type_(out_type) {} | |||
| SentencePieceTokenizerOp::SentencePieceTokenizerOp(const std::string &model_path, const std::string &model_filename, | |||
| const SPieceTokenizerLoadType load_type, | |||
| const SPieceTokenizerOutType out_type) | |||
| : load_type_(load_type), out_type_(out_type) { | |||
| (void)GetModelRealPath(model_path, model_filename); | |||
| } | |||
| Status SentencePieceTokenizerOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) { | |||
| IO_CHECK(input, output); | |||
| if (input->Rank() != 0 || input->type() != DataType::DE_STRING) { | |||
| RETURN_STATUS_UNEXPECTED("the input tensor should be scalar string tensor"); | |||
| } | |||
| std::string_view sentence_v; | |||
| RETURN_IF_NOT_OK(input->GetItemAt(&sentence_v, {})); | |||
| std::string sentence{sentence_v}; | |||
| if (load_type_ == SPieceTokenizerLoadType::kFile) { | |||
| auto status = processor_.Load(file_path_); | |||
| if (!status.ok()) { | |||
| RETURN_STATUS_UNEXPECTED("load sentence piece model failed."); | |||
| } | |||
| } else { | |||
| RETURN_UNEXPECTED_IF_NULL(vocab_); | |||
| auto status = processor_.LoadFromSerializedProto(vocab_.get()->model_proto()); | |||
| if (!status.ok()) { | |||
| RETURN_STATUS_UNEXPECTED("sentence piece load model failed."); | |||
| } | |||
| } | |||
| if (out_type_ == SPieceTokenizerOutType::kString) { | |||
| std::vector<std::string> pieces; | |||
| auto status = processor_.Encode(sentence, &pieces); | |||
| if (!status.ok()) { | |||
| RETURN_STATUS_UNEXPECTED("sentence piece tokenizer error"); | |||
| } | |||
| *output = std::make_unique<Tensor>(pieces, TensorShape({(dsize_t)pieces.size()})); | |||
| } else { | |||
| std::vector<int> ids; | |||
| auto status = processor_.Encode(sentence, &ids); | |||
| if (!status.ok()) { | |||
| RETURN_STATUS_UNEXPECTED("sentence piece tokenizer error"); | |||
| } | |||
| RETURN_IF_NOT_OK(Tensor::CreateTensor(output, ids, TensorShape({(dsize_t)ids.size()}))); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status SentencePieceTokenizerOp::GetModelRealPath(const std::string &model_path, const std::string &filename) { | |||
| char real_path[PATH_MAX] = {0}; | |||
| if (file_path_.size() >= PATH_MAX) { | |||
| RETURN_STATUS_UNEXPECTED("sentence piece model path is invalid."); | |||
| } | |||
| #if defined(_WIN32) || defined(_WIN64) | |||
| if (_fullpath(real_path, common::SafeCStr(model_path), PATH_MAX) == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("sentence piece model path is invalid."); | |||
| } | |||
| #else | |||
| if (realpath(common::SafeCStr(model_path), real_path) == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("sentence piece model path is invalid."); | |||
| } | |||
| #endif | |||
| std::string abs_path = real_path; | |||
| file_path_ = (Path(abs_path) / Path(filename)).toString(); | |||
| return Status::OK(); | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,65 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef DATASET_SENTENCE_PIECE_TOKENIZER_OP_H | |||
| #define DATASET_SENTENCE_PIECE_TOKENIZER_OP_H | |||
| #include <sentencepiece_processor.h> | |||
| #include <string> | |||
| #include <iostream> | |||
| #include <memory> | |||
| #include "minddata/dataset/kernels/tensor_op.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| #include "minddata/dataset/text/sentence_piece_vocab.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| enum class SPieceTokenizerOutType { kString = 0, kInt = 1 }; | |||
| enum class SPieceTokenizerLoadType { kFile = 0, kModel = 1 }; | |||
| class SentencePieceTokenizerOp : public TensorOp { | |||
| public: | |||
| SentencePieceTokenizerOp(const std::shared_ptr<SentencePieceVocab> vocab, SPieceTokenizerLoadType load_type, | |||
| const SPieceTokenizerOutType out_type); | |||
| SentencePieceTokenizerOp(const std::string &model_path, const std::string &model_filename, | |||
| const SPieceTokenizerLoadType load_type, const SPieceTokenizerOutType out_type); | |||
| ~SentencePieceTokenizerOp() override = default; | |||
| Status GetModelRealPath(const std::string &model_path, const std::string &filename); | |||
| void Print(std::ostream &out) const override { | |||
| out << "SentencePieceTokenizerOp out_type = " << out_type_ << " load_type = " << load_type_; | |||
| } | |||
| Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override; | |||
| std::string Name() const override { return kSentencepieceTokenizerOp; } | |||
| protected: | |||
| SPieceTokenizerOutType out_type_; | |||
| std::shared_ptr<SentencePieceVocab> vocab_; | |||
| std::string file_path_; | |||
| SPieceTokenizerLoadType load_type_; | |||
| sentencepiece::SentencePieceProcessor processor_; | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // DATASET_SENTENCE_PIECE_TOKENIZER_OP_H | |||
| @@ -0,0 +1,112 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "minddata/dataset/text/sentence_piece_vocab.h" | |||
| #include <sentencepiece_trainer.h> | |||
| #include <sentencepiece_processor.h> | |||
| #include <fstream> | |||
| #include "common/utils.h" | |||
| #include "minddata/dataset/util/path.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| SentencePieceVocab::SentencePieceVocab() : model_proto_("") {} | |||
| Status SentencePieceVocab::BuildFromFile(const std::vector<std::string> &path_list, const int vocab_size, | |||
| const float character_coverage, const SentencePieceModel model_type, | |||
| const std::unordered_map<std::string, std::string> ¶ms, | |||
| std::shared_ptr<SentencePieceVocab> *vocab) { | |||
| std::unordered_map<std::string, std::string> unorder_map; | |||
| // the input of sentence is comma separated string | |||
| std::string input_str = ""; | |||
| for (auto path : path_list) { | |||
| input_str += path; | |||
| input_str += ","; | |||
| } | |||
| input_str.pop_back(); | |||
| unorder_map["input"] = input_str; | |||
| unorder_map["vocab_size"] = std::to_string(vocab_size); | |||
| unorder_map["model_prefix"] = ""; | |||
| unorder_map["minloglevel"] = "1"; | |||
| unorder_map["character_coverage"] = std::to_string(character_coverage); | |||
| if (model_type == SentencePieceModel::kWord) { | |||
| unorder_map["model_type"] = "WORD"; | |||
| } else if (model_type == SentencePieceModel::kBpe) { | |||
| unorder_map["model_type"] = "BPE"; | |||
| } else if (model_type == SentencePieceModel::kChar) { | |||
| unorder_map["model_type"] = "CHAR"; | |||
| } else { | |||
| unorder_map["model_type"] = "UNIGRAM"; | |||
| } | |||
| // filter some params that set by function param | |||
| // filter model_prefix that must be empty | |||
| for (auto param : params) { | |||
| std::string key = param.first; | |||
| if (key == "input" || key == "vocab_size" || key == "model_prefix" || key == "character_coverage" || | |||
| key == "model_type") { | |||
| continue; | |||
| } | |||
| unorder_map[key] = param.second; | |||
| } | |||
| // set sentence lib's log | |||
| unorder_map["minloglevel"] = "1"; | |||
| *vocab = std::make_shared<SentencePieceVocab>(); | |||
| std::string model_proto; | |||
| sentencepiece::util::Status s_status = sentencepiece::SentencePieceTrainer::Train(unorder_map, nullptr, &model_proto); | |||
| if (!s_status.ok()) { | |||
| return Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, s_status.message()); | |||
| } | |||
| vocab->get()->set_model_proto(model_proto); | |||
| return Status::OK(); | |||
| } | |||
| Status SentencePieceVocab::SaveModel(const std::shared_ptr<SentencePieceVocab> *vocab, std::string path, | |||
| std::string filename) { | |||
| char real_path[PATH_MAX] = {0}; | |||
| if (path.size() >= PATH_MAX) { | |||
| RETURN_STATUS_UNEXPECTED("sentence model path is invalid."); | |||
| } | |||
| #if defined(_WIN32) || defined(_WIN64) | |||
| if (_fullpath(real_path, common::SafeCStr(path), PATH_MAX) == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("sentence model path is invalid."); | |||
| } | |||
| #else | |||
| if (realpath(common::SafeCStr(path), real_path) == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("sentence model path is invalid."); | |||
| } | |||
| #endif | |||
| std::string abs_real_path = (Path(real_path) / Path(filename)).toString(); | |||
| std::ofstream os_file(abs_real_path, std::ios::out); | |||
| (void)os_file.write(vocab->get()->model_proto().data(), vocab->get()->model_proto().size()); | |||
| os_file.close(); | |||
| return Status::OK(); | |||
| } | |||
| const std::string &SentencePieceVocab::model_proto() { return model_proto_; } | |||
| void SentencePieceVocab::set_model_proto(const std::string model_proto) { model_proto_ = model_proto; } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,49 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef DATASET_TEXT_SENTENCE_PIECE_VOCAB_H_ | |||
| #define DATASET_TEXT_SENTENCE_PIECE_VOCAB_H_ | |||
| #include <string> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <unordered_map> | |||
| #include "minddata/dataset/util/status.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| enum class SentencePieceModel { kUnigram = 0, kBpe = 1, kChar = 2, kWord = 3 }; | |||
| class SentencePieceVocab { | |||
| public: | |||
| static Status BuildFromFile(const std::vector<std::string> &path_list, const int vocab_size, | |||
| const float character_coverage, const SentencePieceModel model_type, | |||
| const std::unordered_map<std::string, std::string> ¶ms, | |||
| std::shared_ptr<SentencePieceVocab> *vocab); | |||
| static Status SaveModel(const std::shared_ptr<SentencePieceVocab> *vocab, std::string path, std::string filename); | |||
| SentencePieceVocab(); | |||
| ~SentencePieceVocab() = default; | |||
| const std::string &model_proto(); | |||
| void set_model_proto(const std::string model_proto); | |||
| private: | |||
| std::string model_proto_; | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // DATASET_TEXT_SENTENCE_PIECE_VOCAB_H_ | |||
| @@ -46,6 +46,7 @@ from .validators import check_batch, check_shuffle, check_map, check_filter, che | |||
| check_generatordataset, check_sync_wait, check_zip_dataset, check_add_column, check_textfiledataset, check_concat, \ | |||
| check_random_dataset, check_split, check_bucket_batch_by_length, check_cluedataset, check_save | |||
| from ..core.datatypes import mstype_to_detype, mstypelist_to_detypelist | |||
| from ..text.utils import DE_C_INTER_SENTENCEPIECE_MODE | |||
| try: | |||
| context = import_module("mindspore.context") | |||
| @@ -909,6 +910,11 @@ class Dataset: | |||
| def build_vocab(self, vocab, columns, freq_range, top_k, special_tokens, special_first): | |||
| return BuildVocabDataset(self, vocab, columns, freq_range, top_k, special_tokens, special_first) | |||
| def build_sentencepiece_vocab(self, vocab, col_names, vocab_size, | |||
| character_coverage, model_type, params): | |||
| return BuildSentencePieceVocabDataset(self, vocab, col_names, vocab_size, character_coverage, | |||
| model_type, params) | |||
| def apply(self, apply_func): | |||
| """ | |||
| Apply a function in this dataset. | |||
| @@ -5154,3 +5160,58 @@ class BuildVocabDataset(DatasetOp): | |||
| new_op.special_first = copy.deepcopy(self.special_first) | |||
| return new_op | |||
| class BuildSentencePieceVocabDataset(DatasetOp): | |||
| """ | |||
| Build a SentencePieceVocab from a dataset. | |||
| This function is not meant to be called directly by user. To build vocab, please use the function | |||
| text.SentencePieceVocab.from_dataset() | |||
| Args: | |||
| vocab(SentencePieceVocab): text.SentencePieceVocab object. | |||
| col_names(list): The list of the col name. | |||
| vocab_size(int): Vocabulary size, the type of uint32_t. | |||
| charater_coverage(float): Amount of characters covered by the model, good defaults are: 0.9995 for languages | |||
| with rich character set like Japanse or Chinese and 1.0 for other languages with small character set. | |||
| model_type(SentencePieceModel): Model type.Choose from unigram (default), bpe, char, or word. | |||
| The input sentence must be pretokenized when using word type. | |||
| params(dict): A dictionary with no incoming parameters. | |||
| """ | |||
| def __init__(self, input_dataset, vocab, col_names, vocab_size, character_coverage, model_type, params): | |||
| super().__init__() | |||
| self.vocab = vocab | |||
| self.col_names = col_names | |||
| self.vocab_size = vocab_size | |||
| self.children.append(input_dataset) | |||
| self.character_coverage = character_coverage | |||
| self.model_type = DE_C_INTER_SENTENCEPIECE_MODE[model_type] | |||
| self.params = params | |||
| input_dataset.parent.append(self) | |||
| def get_args(self): | |||
| args = super().get_args() | |||
| args["vocab"] = self.vocab | |||
| args["col_names"] = self.col_names | |||
| args["vocab_size"] = self.vocab_size | |||
| args["character_coverage"] = self.character_coverage | |||
| args["model_type"] = self.model_type | |||
| args["params"] = self.params | |||
| return args | |||
| def __deepcopy__(self, memodict): | |||
| if id(self) in memodict: | |||
| return memodict[id(self)] | |||
| cls = self.__class__ | |||
| new_op = cls.__new__(cls) | |||
| memodict[id(self)] = new_op | |||
| new_op.children = copy.deepcopy(self.children, memodict) | |||
| new_op.col_names = copy.deepcopy(self.col_names, memodict) | |||
| new_op.num_parallel_workers = copy.deepcopy(self.num_parallel_workers, memodict) | |||
| new_op.vocab_size = copy.deepcopy(self.vocab_size, memodict) | |||
| new_op.parent = copy.deepcopy(self.parent, memodict) | |||
| new_op.character_coverage = copy.deepcopy(self.character_coverage, memodict) | |||
| new_op.params = copy.deepcopy(self.params, memodict) | |||
| new_op.vocab = self.vocab | |||
| new_op.model_type = copy.deepcopy(self.model_type) | |||
| return new_op | |||
| @@ -181,6 +181,8 @@ class Iterator: | |||
| op_type = OpName.TEXTFILE | |||
| elif isinstance(dataset, de.BuildVocabDataset): | |||
| op_type = OpName.BUILDVOCAB | |||
| elif isinstance(dataset, de.BuildSentencePieceVocabDataset): | |||
| op_type = OpName.SENTENCEPIECEVOCAB | |||
| elif isinstance(dataset, de.CLUEDataset): | |||
| op_type = OpName.CLUE | |||
| else: | |||
| @@ -19,13 +19,16 @@ utils provides some general methods for nlp text processing. | |||
| """ | |||
| import platform | |||
| from .transforms import Lookup, JiebaTokenizer, UnicodeCharTokenizer, Ngram, WordpieceTokenizer, TruncateSequencePair, \ | |||
| ToNumber, SlidingWindow | |||
| from .utils import to_str, to_bytes, JiebaMode, Vocab, NormalizeForm | |||
| ToNumber, SlidingWindow, SentencePieceTokenizer | |||
| from .utils import to_str, to_bytes, JiebaMode, Vocab, NormalizeForm, SentencePieceVocab, SentencePieceModel, \ | |||
| SPieceTokenizerOutType, SPieceTokenizerLoadType | |||
| __all__ = [ | |||
| "Lookup", "JiebaTokenizer", "UnicodeCharTokenizer", "Ngram", | |||
| "to_str", "to_bytes", "Vocab", "WordpieceTokenizer", "TruncateSequencePair", "ToNumber", | |||
| "PythonTokenizer", "SlidingWindow" | |||
| "PythonTokenizer", "SlidingWindow", "SentencePieceVocab", "SentencePieceTokenizer", "SPieceTokenizerOutType", | |||
| "SentencePieceModel", "SPieceTokenizerLoadType" | |||
| ] | |||
| if platform.system().lower() != 'windows': | |||
| @@ -50,7 +50,7 @@ import numpy as np | |||
| import mindspore._c_dataengine as cde | |||
| from .utils import JiebaMode, NormalizeForm, to_str | |||
| from .utils import JiebaMode, NormalizeForm, to_str, SPieceTokenizerOutType, SPieceTokenizerLoadType | |||
| from .validators import check_lookup, check_jieba_add_dict, \ | |||
| check_jieba_add_word, check_jieba_init, check_with_offsets, check_unicode_script_tokenizer,\ | |||
| check_wordpiece_tokenizer, check_regex_tokenizer, check_basic_tokenizer, check_ngram, check_pair_truncate,\ | |||
| @@ -324,6 +324,36 @@ class WordpieceTokenizer(cde.WordpieceTokenizerOp): | |||
| super().__init__(self.vocab, self.suffix_indicator, self.max_bytes_per_token, | |||
| self.unknown_token, self.with_offsets) | |||
| DE_C_INTER_SENTENCEPIECE_LOADTYPE = { | |||
| SPieceTokenizerLoadType.FILE: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KFILE, | |||
| SPieceTokenizerLoadType.MODEL: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KMODEL | |||
| } | |||
| DE_C_INTER_SENTENCEPIECE_OUTTYPE = { | |||
| SPieceTokenizerOutType.STRING: cde.SPieceTokenizerOutType.DE_SPIECE_TOKENIZER_OUTTYPE_KString, | |||
| SPieceTokenizerOutType.INT: cde.SPieceTokenizerOutType.DE_SPIECE_TOKENIZER_OUTTYPE_KINT | |||
| } | |||
| class SentencePieceTokenizer(cde.SentencePieceTokenizerOp): | |||
| """ | |||
| Tokenize scalar token or 1-D tokens to tokens by sentencepiece. | |||
| Args: | |||
| mode(str or SentencePieceVocab): If the input parameter is a file, then it is of type string, | |||
| if the input parameter is a SentencePieceVocab object, then it is of type SentencePieceVocab. | |||
| out_type(str or int): The type of output. | |||
| """ | |||
| def __init__(self, mode, out_type): | |||
| self.out_type = out_type | |||
| if isinstance(mode, str): | |||
| model_path, model_filename = os.path.split(mode) | |||
| super().__init__(model_path, model_filename, | |||
| DE_C_INTER_SENTENCEPIECE_LOADTYPE[SPieceTokenizerLoadType.FILE], | |||
| DE_C_INTER_SENTENCEPIECE_OUTTYPE[out_type]) | |||
| elif isinstance(mode, cde.SentencePieceVocab): | |||
| super().__init__(mode, DE_C_INTER_SENTENCEPIECE_LOADTYPE[SPieceTokenizerLoadType.MODEL], | |||
| DE_C_INTER_SENTENCEPIECE_OUTTYPE[out_type]) | |||
| if platform.system().lower() != 'windows': | |||
| class WhitespaceTokenizer(cde.WhitespaceTokenizerOp): | |||
| @@ -22,10 +22,11 @@ import copy | |||
| import numpy as np | |||
| import mindspore._c_dataengine as cde | |||
| from .validators import check_from_file, check_from_list, check_from_dict, check_from_dataset | |||
| from .validators import check_from_file, check_from_list, check_from_dict, check_from_dataset, \ | |||
| check_from_dataset_sentencepiece, check_from_file_sentencepiece, check_save_model | |||
| __all__ = [ | |||
| "Vocab", "to_str", "to_bytes" | |||
| "Vocab", "SentencePieceVocab", "to_str", "to_bytes" | |||
| ] | |||
| @@ -137,6 +138,71 @@ class Vocab(cde.Vocab): | |||
| return super().from_dict(word_dict) | |||
| class SentencePieceVocab(cde.SentencePieceVocab): | |||
| """ | |||
| SentencePiece obiect that is used to segmentate words | |||
| """ | |||
| @classmethod | |||
| @check_from_dataset_sentencepiece | |||
| def from_dataset(cls, dataset, col_names, vocab_size, character_coverage, model_type, params): | |||
| """ | |||
| Build a sentencepiece from a dataset | |||
| Args: | |||
| dataset(Dataset): Dataset to build sentencepiece. | |||
| col_names(list): The list of the col name. | |||
| vocab_size(int): Vocabulary size, the type of uint32_t. | |||
| character_coverage(float): Amount of characters covered by the model, good defaults are: 0.9995 for | |||
| languages. with rich character set like Japanse or Chinese and 1.0 for other languages with small | |||
| character set. | |||
| model_type(SentencePieceModel): Choose from unigram (default), bpe, char, or word. The input sentence | |||
| must be pretokenized when using word type. | |||
| params(dict): A dictionary with no incoming parameters. | |||
| Returns: | |||
| SentencePiece, SentencePiece object from dataset. | |||
| """ | |||
| vocab = SentencePieceVocab() | |||
| root = copy.deepcopy(dataset).build_sentencepiece_vocab(vocab, col_names, vocab_size, character_coverage, | |||
| model_type, params) | |||
| for d in root.create_dict_iterator(): | |||
| if d is None: | |||
| raise ValueError("from_dataset should receive data other than None.") | |||
| return vocab | |||
| @classmethod | |||
| @check_from_file_sentencepiece | |||
| def from_file(cls, file_path, vocab_size, character_coverage, model_type, params): | |||
| """ | |||
| Build a SentencePiece object from a list of word. | |||
| Args: | |||
| file_path(list): Path to the file which contains the sentencepiece list. | |||
| vocab_size(int): Vocabulary size, the type of uint32_t. | |||
| character_coverage(float): Amount of characters covered by the model, good defaults are: 0.9995 for | |||
| languages. with rich character set like Japanse or Chinese and 1.0 for other languages with small | |||
| character set. | |||
| model_type(SentencePieceModel): Choose from unigram (default), bpe, char, or word. The input sentence | |||
| must be pretokenized when using word type. | |||
| params(dict): A dictionary with no incoming parameters. | |||
| """ | |||
| return super().from_file(file_path, vocab_size, character_coverage, | |||
| DE_C_INTER_SENTENCEPIECE_MODE[model_type], params) | |||
| @classmethod | |||
| @check_save_model | |||
| def save_model(cls, vocab, path, filename): | |||
| """ | |||
| Save model to filepath | |||
| Args: | |||
| vocab(SentencePieceVocab): A sentencepiece object. | |||
| path(str): Path to store model. | |||
| filename(str): The name of the file. | |||
| """ | |||
| return super().save_model(vocab, path, filename) | |||
| def to_str(array, encoding='utf8'): | |||
| """ | |||
| @@ -188,3 +254,27 @@ class NormalizeForm(IntEnum): | |||
| NFKC = 2 | |||
| NFD = 3 | |||
| NFKD = 4 | |||
| class SentencePieceModel(IntEnum): | |||
| """An enumeration for SentencePieceModel, effective enumeration types are UNIGRAM, BPE, CHAR, WORD.""" | |||
| UNIGRAM = 0 | |||
| BPE = 1 | |||
| CHAR = 2 | |||
| WORD = 3 | |||
| DE_C_INTER_SENTENCEPIECE_MODE = { | |||
| SentencePieceModel.UNIGRAM: cde.SentencePieceModel.DE_SENTENCE_PIECE_UNIGRAM, | |||
| SentencePieceModel.BPE: cde.SentencePieceModel.DE_SENTENCE_PIECE_BPE, | |||
| SentencePieceModel.CHAR: cde.SentencePieceModel.DE_SENTENCE_PIECE_CHAR, | |||
| SentencePieceModel.WORD: cde.SentencePieceModel.DE_SENTENCE_PIECE_WORD | |||
| } | |||
| class SPieceTokenizerOutType(IntEnum): | |||
| """An enumeration for SPieceTokenizerOutType, effective enumeration types are STRING, INT.""" | |||
| STRING = 0 | |||
| INT = 1 | |||
| class SPieceTokenizerLoadType(IntEnum): | |||
| """An enumeration for SPieceTokenizerLoadType, effective enumeration types are FILE, MODEL.""" | |||
| FILE = 0 | |||
| MODEL = 1 | |||
| @@ -419,3 +419,81 @@ def check_python_tokenizer(method): | |||
| return method(self, *args, **kwargs) | |||
| return new_method | |||
| def check_from_dataset_sentencepiece(method): | |||
| """A wrapper that wraps a parameter checker to the original function (from_dataset).""" | |||
| @wraps(method) | |||
| def new_method(self, *args, **kwargs): | |||
| [_, col_names, vocab_size, character_coverage, model_type, params], _ = parse_user_args(method, *args, **kwargs) | |||
| if col_names is not None: | |||
| type_check(col_names, (list,), "col_names") | |||
| if vocab_size is not None: | |||
| check_uint32(vocab_size, "vocab_size") | |||
| if character_coverage is not None: | |||
| type_check(character_coverage, (float,), "character_coverage") | |||
| if model_type is not None: | |||
| from .utils import SentencePieceModel | |||
| type_check(model_type, (str, SentencePieceModel), "model_type") | |||
| if params is not None: | |||
| type_check(params, (dict,), "params") | |||
| return method(self, *args, **kwargs) | |||
| return new_method | |||
| def check_from_file_sentencepiece(method): | |||
| """A wrapper that wraps a parameter checker to the original function (from_file).""" | |||
| @wraps(method) | |||
| def new_method(self, *args, **kwargs): | |||
| [file_path, vocab_size, character_coverage, model_type, params], _ = parse_user_args(method, *args, **kwargs) | |||
| if file_path is not None: | |||
| type_check(file_path, (list,), "file_path") | |||
| if vocab_size is not None: | |||
| check_uint32(vocab_size, "vocab_size") | |||
| if character_coverage is not None: | |||
| type_check(character_coverage, (float,), "character_coverage") | |||
| if model_type is not None: | |||
| from .utils import SentencePieceModel | |||
| type_check(model_type, (str, SentencePieceModel), "model_type") | |||
| if params is not None: | |||
| type_check(params, (dict,), "params") | |||
| return method(self, *args, **kwargs) | |||
| return new_method | |||
| def check_save_model(method): | |||
| """A wrapper that wraps a parameter checker to the original function (save_model).""" | |||
| @wraps(method) | |||
| def new_method(self, *args, **kwargs): | |||
| [vocab, path, filename], _ = parse_user_args(method, *args, **kwargs) | |||
| if vocab is not None: | |||
| type_check(vocab, (cde.SentencePieceVocab,), "vocab") | |||
| if path is not None: | |||
| type_check(path, (str,), "path") | |||
| if filename is not None: | |||
| type_check(filename, (str,), "filename") | |||
| return method(self, *args, **kwargs) | |||
| return new_method | |||
| @@ -94,6 +94,7 @@ SET(DE_UT_SRCS | |||
| tensor_op_fusion_pass_test.cc | |||
| sliding_window_op_test.cc | |||
| epoch_ctrl_op_test.cc | |||
| sentence_piece_vocab_op_test.cc | |||
| ) | |||
| add_executable(de_ut_tests ${DE_UT_SRCS}) | |||
| @@ -0,0 +1,194 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <string> | |||
| #include <string_view> | |||
| #include "common/common.h" | |||
| #include "minddata/dataset/engine/datasetops/build_sentence_piece_vocab_op.h" | |||
| #include "minddata/dataset/text/kernels/sentence_piece_tokenizer_op.h" | |||
| #include "minddata/dataset/text/sentence_piece_vocab.h" | |||
| #include "minddata/dataset/engine/datasetops/source/text_file_op.h" | |||
| #include "gtest/gtest.h" | |||
| #include "utils/log_adapter.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| using namespace mindspore::dataset; | |||
| class MindDataTestSentencePieceVocabOp : public UT::DatasetOpTesting { | |||
| public: | |||
| void CheckEqual(const std::shared_ptr<Tensor> &o, const std::vector<dsize_t> &index, const std::string &expect) { | |||
| std::string_view str; | |||
| Status s = o->GetItemAt(&str, index); | |||
| EXPECT_TRUE(s.IsOk()); | |||
| EXPECT_EQ(str, expect); | |||
| } | |||
| }; | |||
| TEST_F(MindDataTestSentencePieceVocabOp, TestSentencePieceFromDatasetFuntions) { | |||
| MS_LOG(INFO) << "Doing MindDataTestSentencePieceVocabOp TestSentencePieceFromDatasetFuntions."; | |||
| std::string dataset_path; | |||
| dataset_path = datasets_root_path_ + "/test_sentencepiece/botchan.txt"; | |||
| auto tree = std::make_shared<ExecutionTree>(); | |||
| std::shared_ptr<TextFileOp> file_op; | |||
| TextFileOp::Builder builder_file; | |||
| builder_file.SetTextFilesList({dataset_path}).SetRowsPerBuffer(1).SetNumWorkers(1).SetOpConnectorSize(2); | |||
| Status rc = builder_file.Build(&file_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->AssociateNode(file_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| std::shared_ptr<SentencePieceVocab> spm = std::make_unique<SentencePieceVocab>(); | |||
| std::shared_ptr<BuildSentencePieceVocabOp> spv_op; | |||
| BuildSentencePieceVocabOp::Builder builder_spv; | |||
| std::vector<std::string> cols; | |||
| std::unordered_map<std::string, std::string> m_params; | |||
| builder_spv.SetVocab(spm) | |||
| .SetVocabSize(5000) | |||
| .SetColumnNames(cols) | |||
| .SetCharacterCoverage(0.9995) | |||
| .SetModelType(SentencePieceModel::kUnigram) | |||
| .SetParams(m_params) | |||
| .SetOpConnectorSize(2); | |||
| rc = builder_spv.Build(&spv_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->AssociateNode(spv_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = spv_op->AddChild(file_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->AssignRoot(spv_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->Prepare(); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->Launch(); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| // Start the loop of reading tensors from our pipeline | |||
| DatasetIterator di(tree); | |||
| TensorRow tensor_list; | |||
| rc = di.FetchNextTensorRow(&tensor_list); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| while (!tensor_list.empty()) { | |||
| rc = di.FetchNextTensorRow(&tensor_list); | |||
| } | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| } | |||
| TEST_F(MindDataTestSentencePieceVocabOp, TestSentencePieceFromFileFuntions) { | |||
| MS_LOG(INFO) << "Doing MindDataTestSentencePieceVocabOp TestSentencePieceFromFileFuntions."; | |||
| std::string dataset_path; | |||
| dataset_path = datasets_root_path_ + "/test_sentencepiece/botchan.txt"; | |||
| std::vector<std::string> path_list; | |||
| path_list.emplace_back(dataset_path); | |||
| std::unordered_map<std::string, std::string> param_map; | |||
| std::shared_ptr<SentencePieceVocab> spm = std::make_unique<SentencePieceVocab>(); | |||
| Status rc = SentencePieceVocab::BuildFromFile(path_list, 5000, 0.9995, SentencePieceModel::kUnigram, param_map, &spm); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| } | |||
| TEST_F(MindDataTestSentencePieceVocabOp, TestSentencePieceTokenizerFuntions) { | |||
| MS_LOG(INFO) << "Doing MindDataTestSentencePieceVocabOp TestSentencePieceTokenizerFuntions."; | |||
| std::string dataset_path; | |||
| dataset_path = datasets_root_path_ + "/test_sentencepiece/botchan.txt"; | |||
| auto tree = std::make_shared<ExecutionTree>(); | |||
| std::shared_ptr<TextFileOp> file_op; | |||
| TextFileOp::Builder builder_file; | |||
| builder_file.SetTextFilesList({dataset_path}).SetRowsPerBuffer(1).SetNumWorkers(1).SetOpConnectorSize(2); | |||
| Status rc = builder_file.Build(&file_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->AssociateNode(file_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| std::shared_ptr<SentencePieceVocab> spm = std::make_unique<SentencePieceVocab>(); | |||
| std::shared_ptr<BuildSentencePieceVocabOp> spv_op; | |||
| BuildSentencePieceVocabOp::Builder builder_spv; | |||
| std::vector<std::string> cols; | |||
| std::unordered_map<std::string, std::string> m_params; | |||
| builder_spv.SetVocab(spm) | |||
| .SetVocabSize(5000) | |||
| .SetColumnNames(cols) | |||
| .SetCharacterCoverage(0.9995) | |||
| .SetModelType(SentencePieceModel::kUnigram) | |||
| .SetParams(m_params) | |||
| .SetOpConnectorSize(2); | |||
| rc = builder_spv.Build(&spv_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->AssociateNode(spv_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = spv_op->AddChild(file_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->AssignRoot(spv_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->Prepare(); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| rc = tree->Launch(); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| // Start the loop of reading tensors from our pipeline | |||
| DatasetIterator di(tree); | |||
| TensorRow tensor_list; | |||
| rc = di.FetchNextTensorRow(&tensor_list); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| while (!tensor_list.empty()) { | |||
| rc = di.FetchNextTensorRow(&tensor_list); | |||
| } | |||
| std::shared_ptr<Tensor> output_tensor; | |||
| std::unique_ptr<SentencePieceTokenizerOp> op(new SentencePieceTokenizerOp(spm, | |||
| SPieceTokenizerLoadType::kModel, SPieceTokenizerOutType::kString)); | |||
| std::shared_ptr<Tensor> input_tensor = std::make_shared<Tensor>("I saw a girl with a telescope."); | |||
| Status s = op->Compute(input_tensor, &output_tensor); | |||
| std::vector<std::string> expect; | |||
| expect.push_back("▁I"); | |||
| expect.push_back("▁sa"); | |||
| expect.push_back("w"); | |||
| expect.push_back("▁a"); | |||
| expect.push_back("▁girl"); | |||
| expect.push_back("▁with"); | |||
| expect.push_back("▁a"); | |||
| expect.push_back("▁te"); | |||
| expect.push_back("les"); | |||
| expect.push_back("co"); | |||
| expect.push_back("pe"); | |||
| expect.push_back("."); | |||
| ASSERT_TRUE(output_tensor->Size() == expect.size()); | |||
| for (int i = 0; i < output_tensor->Size(); i++) { | |||
| std::string_view str; | |||
| output_tensor->GetItemAt(&str, {i}); | |||
| std::string sentence{str}; | |||
| ASSERT_TRUE(sentence == expect[i]); | |||
| } | |||
| } | |||
| @@ -0,0 +1 @@ | |||
| I saw a girl with a telescope. | |||
| @@ -0,0 +1,92 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================== | |||
| import mindspore.dataset.text as text | |||
| import mindspore.dataset as ds | |||
| from mindspore.dataset.text import SentencePieceModel, to_str, SPieceTokenizerOutType | |||
| VOCAB_FILE = "../data/dataset/test_sentencepiece/botchan.txt" | |||
| DATA_FILE = "../data/dataset/testTokenizerData/sentencepiece_tokenizer.txt" | |||
| def test_from_vocab_to_str(): | |||
| vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) | |||
| tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING) | |||
| dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) | |||
| dataset = dataset.map(operations=tokenizer) | |||
| expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.'] | |||
| for i in dataset.create_dict_iterator(): | |||
| ret = to_str(i["text"]) | |||
| for key, value in enumerate(ret): | |||
| assert value == expect[key] | |||
| def test_from_vocab_to_int(): | |||
| vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) | |||
| tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.INT) | |||
| dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) | |||
| dataset = dataset.map(operations=tokenizer) | |||
| expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4] | |||
| for i in dataset.create_dict_iterator(): | |||
| ret = i["text"] | |||
| for key, value in enumerate(ret): | |||
| assert value == expect[key] | |||
| def test_from_file_to_str(): | |||
| vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) | |||
| text.SentencePieceVocab.save_model(vocab, "./", "m.model") | |||
| tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.STRING) | |||
| dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) | |||
| dataset = dataset.map(operations=tokenizer) | |||
| expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.'] | |||
| for i in dataset.create_dict_iterator(): | |||
| ret = to_str(i["text"]) | |||
| for key, value in enumerate(ret): | |||
| assert value == expect[key] | |||
| def test_from_file_to_int(): | |||
| vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) | |||
| text.SentencePieceVocab.save_model(vocab, "./", "m.model") | |||
| tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.INT) | |||
| dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) | |||
| dataset = dataset.map(operations=tokenizer) | |||
| expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4] | |||
| for i in dataset.create_dict_iterator(): | |||
| ret = i["text"] | |||
| for key, value in enumerate(ret): | |||
| assert value == expect[key] | |||
| def test_build_from_dataset(): | |||
| data = ds.TextFileDataset(VOCAB_FILE, shuffle=False) | |||
| vocab = text.SentencePieceVocab.from_dataset(data, [""], 5000, 0.9995, SentencePieceModel.UNIGRAM, {}) | |||
| tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING) | |||
| dataset = ds.TextFileDataset(DATA_FILE, shuffle=False) | |||
| dataset = dataset.map(operations=tokenizer) | |||
| expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.'] | |||
| for i in dataset.create_dict_iterator(): | |||
| ret = to_str(i["text"]) | |||
| for key, value in enumerate(ret): | |||
| assert value == expect[key] | |||
| if __name__ == "__main__": | |||
| test_from_vocab_to_str() | |||
| test_from_vocab_to_int() | |||
| test_from_file_to_str() | |||
| test_from_file_to_int() | |||
| test_build_from_dataset() | |||
| @@ -0,0 +1,91 @@ | |||
| diff -Npur sentencepiece-0.1.92/src/CMakeLists.txt sentencepiece-0.1.92_bak/src/CMakeLists.txt | |||
| --- sentencepiece-0.1.92/src/CMakeLists.txt 2020-06-08 16:25:01.000000000 +0800 | |||
| +++ sentencepiece-0.1.92_bak/src/CMakeLists.txt 2020-07-02 17:42:33.306933546 +0800 | |||
| @@ -11,6 +11,46 @@ | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License.! | |||
| +add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0) | |||
| + | |||
| + | |||
| +function(protobuf_generate c_var h_var) | |||
| + if(NOT ARGN) | |||
| + message(SEND_ERROR "Error: ms_protobuf_generate() called without any proto files") | |||
| + return() | |||
| + endif() | |||
| + | |||
| + set(${c_var}) | |||
| + set(${h_var}) | |||
| + | |||
| + find_program(PROTOC_EXE NAMES "protoc" PATHS ${PROTOBUF_INC}/../bin NO_DEFAULT_PATH) | |||
| + | |||
| + foreach(file ${ARGN}) | |||
| + get_filename_component(abs_file ${file} ABSOLUTE) | |||
| + get_filename_component(file_name ${file} NAME_WE) | |||
| + get_filename_component(file_dir ${abs_file} PATH) | |||
| + file(RELATIVE_PATH rel_path ${CMAKE_CURRENT_SOURCE_DIR} ${file_dir}) | |||
| + | |||
| + list(APPEND ${c_var} "${CMAKE_BINARY_DIR}/${file_name}.pb.cc") | |||
| + list(APPEND ${h_var} "${CMAKE_BINARY_DIR}/${file_name}.pb.h") | |||
| + | |||
| + add_custom_command( | |||
| + OUTPUT "${CMAKE_BINARY_DIR}/${file_name}.pb.cc" | |||
| + "${CMAKE_BINARY_DIR}/${file_name}.pb.h" | |||
| + WORKING_DIRECTORY ${PROJECT_SOURCE_DIR} | |||
| + COMMAND ${CMAKE_COMMAND} -E make_directory "${CMAKE_BINARY_DIR}" | |||
| + COMMAND ${PROTOC_EXE} -I${file_dir} --cpp_out=${CMAKE_BINARY_DIR} ${abs_file} | |||
| + DEPENDS ${PROTOC_EXE} ${abs_file} | |||
| + COMMENT "Running C++ protocol buffer compiler on ${file}" VERBATIM) | |||
| + endforeach() | |||
| + | |||
| + set_source_files_properties(${${c_var}} ${${h_var}} PROPERTIES GENERATED TRUE) | |||
| + set(${c_var} ${${c_var}} PARENT_SCOPE) | |||
| + set(${h_var} ${${h_var}} PARENT_SCOPE) | |||
| + | |||
| +endfunction() | |||
| + | |||
| + | |||
| if (SPM_USE_BUILTIN_PROTOBUF) | |||
| set(SPM_PROTO_HDRS builtin_pb/sentencepiece.pb.h) | |||
| @@ -52,12 +92,9 @@ if (SPM_USE_BUILTIN_PROTOBUF) | |||
| include_directories(${CMAKE_CURRENT_SOURCE_DIR}/../third_party/protobuf-lite) | |||
| include_directories(builtin_pb) | |||
| else() | |||
| - find_package(Protobuf REQUIRED) | |||
| - include_directories(${Protobuf_INCLUDE_DIRS}) | |||
| - protobuf_generate_cpp(SPM_PROTO_SRCS SPM_PROTO_HDRS sentencepiece.proto) | |||
| - protobuf_generate_cpp(SPM_MODEL_PROTO_SRCS SPM_MODEL_PROTO_HDRS sentencepiece_model.proto) | |||
| - set(PROTOBUF_LITE_SRCS "") | |||
| - include_directories(${PROTOBUF_INCLUDE_DIR}) | |||
| + include_directories(${PROTOBUF_INC}) | |||
| + protobuf_generate(SPM_PROTO_SRCS SPM_PROTO_HDRS sentencepiece.proto) | |||
| + protobuf_generate(SPM_MODEL_PROTO_SRCS SPM_MODEL_PROTO_HDRS sentencepiece_model.proto) | |||
| endif() | |||
| include_directories(${CMAKE_CURRENT_BINARY_DIR}) | |||
| @@ -191,11 +228,13 @@ endif() | |||
| add_library(sentencepiece-static STATIC ${SPM_SRCS}) | |||
| add_library(sentencepiece_train-static STATIC ${SPM_TRAIN_SRCS}) | |||
| -target_link_libraries(sentencepiece-static INTERFACE ${SPM_LIBS}) | |||
| +find_library(PROTO_LIB NAMES "libprotobuf.a" PATHS ${PROTOBUF_INC}/../lib NO_DEFAULT_PATH) | |||
| + | |||
| +target_link_libraries(sentencepiece-static INTERFACE ${PROTO_LIB} ${SPM_LIBS}) | |||
| target_link_libraries(sentencepiece_train-static INTERFACE sentencepiece-static ${SPM_LIBS}) | |||
| if (SPM_ENABLE_SHARED) | |||
| - target_link_libraries(sentencepiece ${SPM_LIBS}) | |||
| + target_link_libraries(sentencepiece ${SPM_LIBS} ${PROTO_LIB}) | |||
| target_link_libraries(sentencepiece_train ${SPM_LIBS} sentencepiece) | |||
| set(SPM_INSTALLTARGETS sentencepiece sentencepiece_train sentencepiece-static sentencepiece_train-static) | |||
| set_target_properties(sentencepiece sentencepiece_train PROPERTIES SOVERSION 0 VERSION 0.0.0) | |||
| @@ -265,7 +304,7 @@ install(TARGETS ${SPM_INSTALLTARGETS} | |||
| RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} | |||
| LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} | |||
| ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}) | |||
| -install(FILES sentencepiece_trainer.h sentencepiece_processor.h | |||
| +install(FILES sentencepiece_trainer.h sentencepiece_processor.h "${CMAKE_BINARY_DIR}/sentencepiece_model.pb.h" | |||
| DESTINATION ${CMAKE_INSTALL_INCDIR}) | |||
| file(TO_NATIVE_PATH "${PROJECT_SOURCE_DIR}/data" data_dir) | |||