Merge pull request !2369 from baihuawei/reducetags/v0.5.0-beta
| @@ -0,0 +1,99 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "kernel/cpu/mkldnn/softmax_cross_entropy_with_logits_cpu_kernel.h" | |||
| #include <numeric> | |||
| #include <functional> | |||
| #include <cmath> | |||
| #include "kernel/cpu/mkldnn/mkl_kernel_engine.h" | |||
| #include "device/cpu/cpu_device_address.h" | |||
| #include "common/utils.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| void SoftmaxCrossEntropyWithLogitsCPUKernel::InitInputOutputSize(const CNodePtr &kernel_node) { | |||
| CPUKernel::InitInputOutputSize(kernel_node); | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| size_t type_size = sizeof(float); | |||
| std::vector<size_t> shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0); | |||
| size_t tensor_size = std::accumulate(shape.begin(), shape.end(), type_size, std::multiplies<size_t>()); | |||
| workspace_size_list_.emplace_back(tensor_size); | |||
| } | |||
| void SoftmaxCrossEntropyWithLogitsCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| std::vector<size_t> shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0); | |||
| dnnl::memory::dims mem_dims; | |||
| mem_dims.insert(mem_dims.end(), shape.begin(), shape.end()); | |||
| if (mem_dims.size() != 2) { | |||
| MS_LOG(EXCEPTION) << "SoftmaxCrossEntropyWithLogits kernel dims invalid " << mem_dims.size(); | |||
| } | |||
| batch_size_ = shape[0]; | |||
| class_num_ = shape[1]; | |||
| if (batch_size_ == 0 || class_num_ == 0) { | |||
| MS_LOG(EXCEPTION) << "invalid batch size or class num input!"; | |||
| } | |||
| dnnl::memory::desc mem_desc(mem_dims, dnnl::memory::data_type::f32, dnnl::memory::format_tag::nc); | |||
| dnnl::softmax_forward::desc desc = dnnl::softmax_forward::desc(dnnl::prop_kind::forward_training, mem_desc, 1); | |||
| auto prim_desc = dnnl::softmax_forward::primitive_desc(desc, MKLKernelEngine::Get().engine()); | |||
| primitive_ = std::make_shared<dnnl::softmax_forward>(prim_desc); | |||
| AddArgument(DNNL_ARG_SRC, mem_desc); | |||
| AddArgument(DNNL_ARG_DST, mem_desc); | |||
| } | |||
| void SoftmaxCrossEntropyWithLogitsCPUKernel::ForwardPostExecute(const float *logits, const float *labels, | |||
| float *output1, float *output2) const { | |||
| float epsilon = 1e-6; | |||
| for (size_t i = 0; i < batch_size_; ++i) { | |||
| output1[i] = 0; | |||
| float loss = 0.0; | |||
| for (size_t j = 0; j < class_num_; ++j) { | |||
| float logit = logf(logits[i * class_num_ + j] <= 0.0 ? epsilon : logits[i * class_num_ + j]); | |||
| output2[i * class_num_ + j] = logits[i * class_num_ + j] - labels[i * class_num_ + j]; | |||
| loss += labels[i * class_num_ + j] * logit; | |||
| } | |||
| output1[i] = -loss; | |||
| } | |||
| } | |||
| bool SoftmaxCrossEntropyWithLogitsCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> &workspace, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (inputs.empty() || workspace.empty() || outputs.empty()) { | |||
| MS_LOG(EXCEPTION) << "error input output size!"; | |||
| } | |||
| size_t batch_float_size = batch_size_ * sizeof(float); | |||
| size_t batch_class_float_size = class_num_ * batch_float_size; | |||
| if (inputs[0]->size != workspace[0]->size || inputs[0]->size != batch_class_float_size || | |||
| inputs[1]->size != batch_class_float_size) { | |||
| MS_LOG(EXCEPTION) << "error input data size!"; | |||
| } | |||
| if (outputs[1]->size != batch_class_float_size || outputs[0]->size != batch_float_size) { | |||
| MS_LOG(EXCEPTION) << "error output data size!"; | |||
| } | |||
| SetArgumentHandle(DNNL_ARG_SRC, inputs[0]->addr); | |||
| SetArgumentHandle(DNNL_ARG_DST, workspace[0]->addr); | |||
| ExecutePrimitive(); | |||
| auto labels = reinterpret_cast<float *>(inputs[1]->addr); | |||
| auto logits = reinterpret_cast<float *>(workspace[0]->addr); | |||
| auto output1 = reinterpret_cast<float *>(outputs[0]->addr); | |||
| auto output2 = reinterpret_cast<float *>(outputs[1]->addr); | |||
| ForwardPostExecute(logits, labels, output1, output2); | |||
| return true; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,53 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_CPU_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_CPU_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS_CPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include <memory> | |||
| #include "kernel/cpu/mkldnn/mkl_cpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class SoftmaxCrossEntropyWithLogitsCPUKernel : public MKLCPUKernel { | |||
| public: | |||
| SoftmaxCrossEntropyWithLogitsCPUKernel() = default; | |||
| ~SoftmaxCrossEntropyWithLogitsCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| protected: | |||
| void InitInputOutputSize(const CNodePtr &kernel_node) override; | |||
| private: | |||
| void ForwardPostExecute(const float *logits, const float *labels, float *output1, float *output2) const; | |||
| size_t class_num_{0}; | |||
| size_t batch_size_{0}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(SoftmaxCrossEntropyWithLogits, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| SoftmaxCrossEntropyWithLogitsCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_KERNEL_CPU_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS_CPU_KERNEL_H_ | |||
| @@ -0,0 +1,161 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include <map> | |||
| #include <string> | |||
| #include <vector> | |||
| #include "kernel/cpu/reduce_cpu_kernel.h" | |||
| #include "device/cpu/cpu_device_address.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| const size_t kReduceTypeMax = 0; | |||
| const size_t kReduceTypeMean = 1; | |||
| const size_t kReduceTypeSum = 2; | |||
| const size_t kMaxDim = 100; | |||
| void ReduceCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node); | |||
| if (kernel_name == "ReduceMax") { | |||
| reduce_type_ = kReduceTypeMax; | |||
| } else if (kernel_name == "ReduceMean") { | |||
| reduce_type_ = kReduceTypeMean; | |||
| } else if (kernel_name == "ReduceSum") { | |||
| reduce_type_ = kReduceTypeSum; | |||
| } else { | |||
| MS_LOG(EXCEPTION) << "Array reduce kernel type " << kernel_name << " is not supported."; | |||
| } | |||
| shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 0); | |||
| auto axis_addr = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr(AXIS); | |||
| if (axis_addr->isa<ValueTuple>()) { | |||
| auto attr_axis = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, AXIS); | |||
| if (attr_axis.size() > shape_.size()) { | |||
| MS_LOG(EXCEPTION) << "invalid axis size: " << axis_.size(); | |||
| } else if (attr_axis.empty()) { | |||
| axis_.push_back(shape_.size() - 1); | |||
| } else { | |||
| for (auto axis : attr_axis) { | |||
| if (IntToSize(axis) >= (shape_.size())) { | |||
| MS_LOG(EXCEPTION) << "axis value is oversize."; | |||
| } | |||
| axis < 0 ? axis_.push_back(axis + shape_.size()) : axis_.push_back(axis); | |||
| } | |||
| } | |||
| } else if (axis_addr->isa<Int32Imm>()) { | |||
| int axis = AnfAlgo::GetNodeAttr<int>(kernel_node, AXIS); | |||
| if (axis >= 0 && IntToSize(axis) >= shape_.size()) { | |||
| MS_LOG(EXCEPTION) << "axis value is oversize."; | |||
| } | |||
| axis < 0 ? axis_.push_back(axis + shape_.size()) : axis_.push_back(axis); | |||
| } else { | |||
| MS_LOG(EXCEPTION) << "Attribute axis type is invalid."; | |||
| } | |||
| for (size_t i = 0; i < shape_.size(); ++i) { | |||
| if (shape_[i] <= 0) { | |||
| MS_LOG(EXCEPTION) << "shape value is invalid."; | |||
| } | |||
| left_dims_ *= shape_[i]; | |||
| } | |||
| for (size_t i = 0; i < axis_.size(); ++i) { | |||
| stride_ *= shape_[axis_[i]]; | |||
| } | |||
| if (stride_ <= 0) { | |||
| MS_LOG(EXCEPTION) << "stride_ must greater than zero."; | |||
| } | |||
| left_dims_ = left_dims_ / stride_; | |||
| } | |||
| bool ReduceCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> & /*workspaces*/, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (inputs.empty() || outputs.empty()) { | |||
| MS_LOG(EXCEPTION) << "input or output empty!"; | |||
| } | |||
| size_t out_float_size = left_dims_ * sizeof(float); | |||
| size_t in_float_size = stride_ * out_float_size; | |||
| if (inputs[0]->size != in_float_size || outputs[0]->size != out_float_size) { | |||
| MS_LOG(EXCEPTION) << "invalid input or output data size!"; | |||
| } | |||
| auto input = reinterpret_cast<float *>(inputs[0]->addr); | |||
| auto output = reinterpret_cast<float *>(outputs[0]->addr); | |||
| int size = inputs[0]->size / sizeof(float); | |||
| std::vector<float> new_input(IntToSize(size), 0.0); | |||
| std::vector<size_t> transpose_axis; | |||
| for (size_t i = 0; i < shape_.size(); ++i) { | |||
| bool insert = true; | |||
| for (size_t j = 0; j < axis_.size(); ++j) { | |||
| if (axis_[j] == i) { | |||
| insert = false; | |||
| break; | |||
| } | |||
| } | |||
| if (insert) { | |||
| transpose_axis.push_back(i); | |||
| } | |||
| } | |||
| (void)transpose_axis.insert(transpose_axis.end(), axis_.begin(), axis_.end()); | |||
| Transpose(size, input, shape_, transpose_axis, SizeToInt(shape_.size()), &new_input[0]); | |||
| if (reduce_type_ == kReduceTypeMax) { | |||
| for (size_t i = 0; i < left_dims_; ++i) { | |||
| float value = new_input[i * stride_]; | |||
| for (size_t k = 0; k < stride_; ++k) { | |||
| if (value < new_input[i * stride_ + k]) { | |||
| value = new_input[i * stride_ + k]; | |||
| } | |||
| } | |||
| output[i] = value; | |||
| } | |||
| } else { | |||
| for (size_t i = 0; i < left_dims_; ++i) { | |||
| float value = 0.0; | |||
| for (size_t k = 0; k < stride_; ++k) { | |||
| value += new_input[i * stride_ + k]; | |||
| } | |||
| if (reduce_type_ == kReduceTypeMean) { | |||
| output[i] = value / stride_; | |||
| } else { | |||
| output[i] = value; | |||
| } | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| void ReduceCPUKernel::Transpose(const int size, const float *input, const std::vector<size_t> &input_shape, | |||
| const std::vector<size_t> &input_axis, const int shape_size, float *output) { | |||
| int pos_array[kMaxDim]; | |||
| int size_offset[kMaxDim]; | |||
| size_offset[0] = size / SizeToInt(input_shape[0]); | |||
| for (int i = 1; i < shape_size; i++) { | |||
| size_offset[i] = size_offset[i - 1] / SizeToInt(input_shape[i]); | |||
| } | |||
| for (int position = 0; position < size; position += 1) { | |||
| int temp_position = position; | |||
| pos_array[0] = temp_position / size_offset[0]; | |||
| for (int i = 1; i < shape_size; i++) { | |||
| temp_position -= pos_array[i - 1] * size_offset[i - 1]; | |||
| pos_array[i] = temp_position / size_offset[i]; | |||
| } | |||
| int new_position = pos_array[SizeToInt(input_axis[shape_size - 1])]; | |||
| int new_position_size = 1; | |||
| for (int j = shape_size - 2; j >= 0; j--) { | |||
| new_position_size *= SizeToInt(input_shape[SizeToInt(input_axis[j + 1])]); | |||
| new_position += pos_array[SizeToInt(input_axis[j])] * new_position_size; | |||
| } | |||
| output[new_position] = input[position]; | |||
| } | |||
| return; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,52 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_CPU_REDUCE_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_CPU_REDUCE_CPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include <memory> | |||
| #include <string> | |||
| #include "kernel/cpu/cpu_kernel.h" | |||
| #include "kernel/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class ReduceCPUKernel : public CPUKernel { | |||
| public: | |||
| ReduceCPUKernel() = default; | |||
| ~ReduceCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| private: | |||
| void Transpose(const int size, const float *input, const std::vector<size_t> &input_shape, | |||
| const std::vector<size_t> &input_axis, const int shape_size, float *output); | |||
| size_t reduce_type_; | |||
| std::vector<size_t> axis_; | |||
| std::vector<size_t> shape_; | |||
| size_t left_dims_ = 1; | |||
| size_t stride_ = 1; | |||
| }; | |||
| MS_REG_CPU_KERNEL(ReduceMean, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ReduceCPUKernel); | |||
| MS_REG_CPU_KERNEL(ReduceMax, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ReduceCPUKernel); | |||
| MS_REG_CPU_KERNEL(ReduceSum, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ReduceCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_KERNEL_CPU_REDUCE_CPU_KERNEL_H_ | |||
| @@ -0,0 +1,93 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import pytest | |||
| import numpy as np | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| import mindspore.nn as nn | |||
| import mindspore.context as context | |||
| from mindspore.common.api import ms_function | |||
| context.set_context(device_target="CPU") | |||
| class NetReduce(nn.Cell): | |||
| def __init__(self): | |||
| super(NetReduce, self).__init__() | |||
| self.axis0 = 0 | |||
| self.axis1 = 1 | |||
| self.axis2 = -1 | |||
| self.axis3 = (0, 1) | |||
| self.axis4 = (0, 1, 2) | |||
| self.reduce_mean = P.ReduceMean(False) | |||
| self.reduce_sum = P.ReduceSum(False) | |||
| self.reduce_max = P.ReduceMax(False) | |||
| @ms_function | |||
| def construct(self, indice): | |||
| return (self.reduce_mean(indice, self.axis0), | |||
| self.reduce_mean(indice, self.axis1), | |||
| self.reduce_mean(indice, self.axis2), | |||
| self.reduce_mean(indice, self.axis3), | |||
| self.reduce_mean(indice, self.axis4), | |||
| self.reduce_sum(indice, self.axis0), | |||
| self.reduce_sum(indice, self.axis2), | |||
| self.reduce_max(indice, self.axis0), | |||
| self.reduce_max(indice, self.axis2)) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_reduce(): | |||
| reduce = NetReduce() | |||
| indice = Tensor(np.array([ | |||
| [[0., 2., 1., 4., 0., 2.], [3., 1., 2., 2., 4., 0.]], | |||
| [[2., 0., 1., 5., 0., 1.], [1., 0., 0., 4., 4., 3.]], | |||
| [[4., 1., 4., 0., 0., 0.], [2., 5., 1., 0., 1., 3.]] | |||
| ]).astype(np.float32)) | |||
| output = reduce(indice) | |||
| print(output[0]) | |||
| print(output[1]) | |||
| print(output[2]) | |||
| print(output[3]) | |||
| print(output[4]) | |||
| print(output[5]) | |||
| print(output[6]) | |||
| print(output[7]) | |||
| print(output[8]) | |||
| expect_0 = np.array([[2., 1., 2., 3., 0., 1], [2., 2., 1., 2., 3., 2.]]).astype(np.float32) | |||
| expect_1 = np.array([[1.5, 1.5, 1.5, 3., 2., 1.], [1.5, 0., 0.5, 4.5, 2., 2.], [3., 3., 2.5, 0., 0.5, 1.5]]).astype( | |||
| np.float32) | |||
| expect_2 = np.array([[1.5, 2.], [1.5, 2.], [1.5, 2.]]).astype(np.float32) | |||
| expect_3 = np.array([2, 1.5, 1.5, 2.5, 1.5, 1.5]).astype(np.float32) | |||
| expect_4 = np.array([1.75]).astype(np.float32) | |||
| expect_5 = np.array([[6., 3., 6., 9., 0., 3.], [6., 6., 3., 6., 9., 6.]]).astype(np.float32) | |||
| expect_6 = np.array([[9., 12.], [9., 12.], [9., 12.]]).astype(np.float32) | |||
| expect_7 = np.array([[4., 2., 4., 5., 0., 2.], [3., 5., 2., 4., 4., 3.]]).astype(np.float32) | |||
| expect_8 = np.array([[4., 4.], [5., 4.], [4., 5.]]).astype(np.float32) | |||
| assert (output[0].asnumpy() == expect_0).all() | |||
| assert (output[1].asnumpy() == expect_1).all() | |||
| assert (output[2].asnumpy() == expect_2).all() | |||
| assert (output[3].asnumpy() == expect_3).all() | |||
| assert (output[4].asnumpy() == expect_4).all() | |||
| assert (output[5].asnumpy() == expect_5).all() | |||
| assert (output[6].asnumpy() == expect_6).all() | |||
| assert (output[7].asnumpy() == expect_7).all() | |||
| assert (output[8].asnumpy() == expect_8).all() | |||
| test_reduce() | |||
| @@ -0,0 +1,52 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| class NetSoftmaxCrossEntropyWithLogits(nn.Cell): | |||
| def __init__(self): | |||
| super(NetSoftmaxCrossEntropyWithLogits, self).__init__() | |||
| self.loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False) | |||
| def construct(self, logits, labels): | |||
| return self.loss(logits, labels) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_softmax_cross_entropy_with_logits(): | |||
| logits = Tensor(np.array([[1, 1, 10], | |||
| [1, 10, 1], | |||
| [10, 1, 1]]).astype(np.float32)) | |||
| labels = Tensor(np.array([[0, 0, 1], | |||
| [0, 1, 0], | |||
| [1, 0, 0]]).astype(np.float32)) | |||
| expect_loss = [0.00024673, 0.00024673, 0.00024673] | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='CPU') | |||
| softmax_cross_entropy_with_logits = NetSoftmaxCrossEntropyWithLogits() | |||
| output = softmax_cross_entropy_with_logits(logits, labels) | |||
| error0 = 1.0e-6 | |||
| diff0 = output.asnumpy() - expect_loss | |||
| assert np.all(abs(diff0) < error0) | |||
| test_softmax_cross_entropy_with_logits() | |||