|
|
|
@@ -191,8 +191,7 @@ class HostAllGather(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Raises: |
|
|
|
TypeError: If group is not a list nor tuple, or elements of group are not int. |
|
|
|
ValueError: If the local rank id of the calling process not in group, |
|
|
|
or rank_id from group not in [0, 7]. |
|
|
|
ValueError: If group is not set, or rank_id from group not in [0, 7]. |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. |
|
|
|
@@ -281,7 +280,7 @@ class ReduceScatter(PrimitiveWithInfer): |
|
|
|
>>> def construct(self, x): |
|
|
|
>>> return self.reducescatter(x) |
|
|
|
>>> |
|
|
|
>>> input_ = Tensor(np.ones([2, 8]).astype(np.float32)) |
|
|
|
>>> input_ = Tensor(np.ones([8, 8]).astype(np.float32)) |
|
|
|
>>> net = Net() |
|
|
|
>>> output = net(input_) |
|
|
|
""" |
|
|
|
@@ -327,8 +326,8 @@ class HostReduceScatter(PrimitiveWithInfer): |
|
|
|
Raises: |
|
|
|
TypeError: If op is not a string and group is not a list nor tuple, |
|
|
|
or elements of group are not int. |
|
|
|
ValueError: If the first dimension of input can not be divided by rank size, |
|
|
|
or group is not set, or rank_id not in [1, 7]. |
|
|
|
ValueError: If the first dimension of input can not be divided by group size, |
|
|
|
or group is not set, or rank_id not in [0, 7]. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> import mindspore.nn as nn |
|
|
|
@@ -348,7 +347,7 @@ class HostReduceScatter(PrimitiveWithInfer): |
|
|
|
>>> def construct(self, x): |
|
|
|
>>> return self.hostreducescatter(x) |
|
|
|
>>> |
|
|
|
>>> input_ = Tensor(np.ones([2, 8]).astype(np.float32)) |
|
|
|
>>> input_ = Tensor(np.ones([8, 8]).astype(np.float32)) |
|
|
|
>>> net = Net() |
|
|
|
>>> output = net(input_) |
|
|
|
""" |
|
|
|
|