From: @fangzehua Reviewed-by: @wuxuejian,@liangchenghui Signed-off-by: @wuxuejianpull/14849/MERGE
| @@ -30,7 +30,6 @@ void AssignCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| auto input_x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| auto input_y_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| if (input_x_shape.size() != input_y_shape.size()) MS_LOG(EXCEPTION) << "x y must be same shape"; | |||
| for (size_t i = 0; i < input_x_shape.size(); ++i) { | |||
| if (input_x_shape[i] != input_y_shape[i]) { | |||
| @@ -1,113 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.h" | |||
| #include <string> | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| void Compress(HashmapEntry<T> *entry_p, const size_t &length, T entry) { | |||
| T i = (entry + 1) % length, off = 1; | |||
| for (; !entry_p[i].IsEmpty(); i = (i + 1) % length, off++) { | |||
| if (entry_p[i].tag > off) { | |||
| entry_p[entry].key = entry_p[i].key; | |||
| entry_p[entry].value = entry_p[i].value; | |||
| entry_p[entry].step = entry_p[i].step; | |||
| entry_p[entry].tag = entry_p[i].tag - off; | |||
| entry_p[i].SetEmpty(); | |||
| off = 0; | |||
| entry = i; | |||
| } | |||
| } | |||
| } | |||
| void CacheSwapHashmapCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| auto hashmap_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| auto emb_idx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| if (hashmap_shape.size() != 2) { | |||
| MS_LOG(EXCEPTION) << "Dimension of HashMap must be 2, (n, 4)"; | |||
| } | |||
| for (size_t i = 0; i < emb_idx_shape.size(); ++i) { | |||
| batch_size_ *= emb_idx_shape[i]; | |||
| } | |||
| hashmap_length_ = hashmap_shape[0]; | |||
| if (hashmap_length_ <= 0) { | |||
| MS_LOG(EXCEPTION) << "Hashmap length must > 0"; | |||
| } | |||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||
| } | |||
| bool CacheSwapHashmapCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (dtype_ == kNumberTypeInt32) { | |||
| LaunchKernel<int>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeInt64) { | |||
| LaunchKernel<int64_t>(inputs, outputs); | |||
| } else { | |||
| MS_LOG(ERROR) << "Only support int32, int64"; | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| template <typename T> | |||
| void CacheSwapHashmapCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| HashmapEntry<T> *hashmap = reinterpret_cast<HashmapEntry<T> *>(inputs[0]->addr); | |||
| auto miss_emb_idx = reinterpret_cast<T *>(inputs[1]->addr); | |||
| step_ = *reinterpret_cast<T *>(inputs[2]->addr); | |||
| auto swap_cache_idx = reinterpret_cast<T *>(outputs[0]->addr); | |||
| auto old_emb_idx = reinterpret_cast<T *>(outputs[1]->addr); | |||
| for (size_t i = 0; i < batch_size_; ++i) { | |||
| if (miss_emb_idx[i] < 0) { | |||
| swap_cache_idx[i] = -1; | |||
| old_emb_idx[i] = -1; | |||
| } else { | |||
| T emb_idx = miss_emb_idx[i]; | |||
| T entry = HashFunc(emb_idx, hashmap_length_); | |||
| T tag_count = 1; | |||
| while (!hashmap[entry].IsEmpty()) { | |||
| entry = (entry + 1) % hashmap_length_; | |||
| tag_count++; | |||
| } | |||
| hashmap[entry].key = emb_idx; | |||
| hashmap[entry].step = step_; | |||
| hashmap[entry].tag = tag_count; | |||
| T tmp_entry = (entry + 1) % hashmap_length_; | |||
| while (hashmap[tmp_entry].IsEmpty() || hashmap[tmp_entry].IsUsing(step_)) { | |||
| tmp_entry = (tmp_entry + 1) % hashmap_length_; | |||
| } | |||
| swap_cache_idx[i] = hashmap[tmp_entry].value; | |||
| old_emb_idx[i] = hashmap[tmp_entry].key; | |||
| hashmap[entry].value = swap_cache_idx[i]; | |||
| hashmap[tmp_entry].SetEmpty(); | |||
| Compress(hashmap, hashmap_length_, tmp_entry); | |||
| } | |||
| } | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -1,87 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CACHE_SWAP_HASHMAP_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CACHE_SWAP_HASHMAP_CPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| #include "backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class CacheSwapHashmapCPUKernel : public CPUKernel { | |||
| public: | |||
| CacheSwapHashmapCPUKernel() = default; | |||
| ~CacheSwapHashmapCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| template <typename T> | |||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs); | |||
| private: | |||
| size_t batch_size_{1}; | |||
| size_t hashmap_length_{1}; | |||
| int64_t step_{0}; | |||
| TypeId dtype_{kTypeUnknown}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(CacheSwapHashmap, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32), | |||
| CacheSwapHashmapCPUKernel); | |||
| MS_REG_CPU_KERNEL(CacheSwapHashmap, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64), | |||
| CacheSwapHashmapCPUKernel); | |||
| MS_REG_CPU_KERNEL(CacheSwapHashmap, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64), | |||
| CacheSwapHashmapCPUKernel); | |||
| MS_REG_CPU_KERNEL(CacheSwapHashmap, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32), | |||
| CacheSwapHashmapCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CACHE_SWAP_HASHMAP_CPU_KERNEL_H_ | |||
| @@ -1,108 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h" | |||
| #include <string> | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| void SearchCacheIdxCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| auto hashmap_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| auto emb_idx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| if (hashmap_shape.size() != 2) { | |||
| MS_LOG(EXCEPTION) << "Dimension of HashMap must be 2, (n, 4)"; | |||
| } | |||
| for (size_t i = 0; i < emb_idx_shape.size(); ++i) { | |||
| batch_size_ *= emb_idx_shape[i]; | |||
| } | |||
| hashmap_length_ = hashmap_shape[0]; | |||
| if (hashmap_length_ <= 0) { | |||
| MS_LOG(EXCEPTION) << "Hashmap length must > 0"; | |||
| } | |||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||
| } | |||
| bool SearchCacheIdxCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (dtype_ == kNumberTypeInt32) { | |||
| LaunchKernel<int>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeInt64) { | |||
| LaunchKernel<int64_t>(inputs, outputs); | |||
| } else { | |||
| MS_LOG(ERROR) << "Only support int32, int64"; | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| template <typename T> | |||
| void SearchCacheIdxCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| HashmapEntry<T> *hashmap = reinterpret_cast<HashmapEntry<T> *>(inputs[0]->addr); | |||
| auto input_indices = reinterpret_cast<T *>(inputs[1]->addr); | |||
| step_ = *reinterpret_cast<T *>(inputs[2]->addr); | |||
| emb_max_num = *reinterpret_cast<T *>(inputs[3]->addr); | |||
| cache_max_num = *reinterpret_cast<T *>(inputs[4]->addr); | |||
| auto output_cache_idx = reinterpret_cast<T *>(outputs[0]->addr); | |||
| auto output_miss_idx = reinterpret_cast<T *>(outputs[1]->addr); | |||
| auto output_miss_emb_idx = reinterpret_cast<T *>(outputs[2]->addr); | |||
| float total_count = 0; | |||
| int count_size = 0; | |||
| float hit_count = 0; | |||
| for (size_t i = 0; i < batch_size_; ++i) { | |||
| if (input_indices[i] == emb_max_num) { | |||
| output_miss_idx[i] = -1; | |||
| output_cache_idx[i] = cache_max_num; | |||
| output_miss_emb_idx[i] = -1; | |||
| continue; | |||
| } | |||
| T key = input_indices[i]; | |||
| T tmp_entry = HashFunc(key, hashmap_length_); | |||
| int count = 1; | |||
| count_size += 1; | |||
| while ((!hashmap[tmp_entry].IsEmpty() && !hashmap[tmp_entry].IsKey(key))) { | |||
| tmp_entry = (tmp_entry + 1) % hashmap_length_; | |||
| count += 1; | |||
| } | |||
| total_count += count; | |||
| if (hashmap[tmp_entry].IsEmpty()) { | |||
| output_miss_idx[i] = i; | |||
| output_miss_emb_idx[i] = key; | |||
| output_cache_idx[i] = -1; | |||
| } else { | |||
| hit_count += 1; | |||
| output_miss_idx[i] = -1; | |||
| output_cache_idx[i] = hashmap[tmp_entry].value; | |||
| hashmap[tmp_entry].step = step_; | |||
| output_miss_emb_idx[i] = -1; | |||
| } | |||
| } | |||
| if (count_size != 0) { | |||
| MS_LOG(INFO) << "avg search count: " << total_count / count_size; | |||
| MS_LOG(INFO) << "cache hit rate: " << hit_count / count_size; | |||
| } | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -1,138 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_ | |||
| #include <math.h> | |||
| #include <vector> | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| #define NULLTAG 0 | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| struct HashmapEntry { | |||
| T key; | |||
| T value; | |||
| T step; | |||
| T tag; | |||
| bool IsEmpty() { | |||
| if (this->tag == NULLTAG) | |||
| return true; | |||
| else | |||
| return false; | |||
| } | |||
| bool IsUsing(const T &train_step) { | |||
| if (this->step >= (train_step - 1)) | |||
| return true; | |||
| else | |||
| return false; | |||
| } | |||
| bool IsKey(const T &emb_idx) { | |||
| if (this->key == emb_idx) | |||
| return true; | |||
| else | |||
| return false; | |||
| } | |||
| void SetEmpty() { this->tag = NULLTAG; } | |||
| }; | |||
| template <typename T> | |||
| T HashFunc(const T &key, const size_t &m) { | |||
| return (T)(((0.6180339 * key) - floor(0.6180339 * key)) * m); | |||
| } | |||
| class SearchCacheIdxCPUKernel : public CPUKernel { | |||
| public: | |||
| SearchCacheIdxCPUKernel() = default; | |||
| ~SearchCacheIdxCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| template <typename T> | |||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs); | |||
| private: | |||
| size_t batch_size_{1}; | |||
| size_t hashmap_length_{1}; | |||
| size_t step_{0}; | |||
| int64_t emb_max_num = 999999999; | |||
| int64_t cache_max_num = 999999999; | |||
| TypeId dtype_{kTypeUnknown}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(SearchCacheIdx, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32), | |||
| SearchCacheIdxCPUKernel); | |||
| MS_REG_CPU_KERNEL(SearchCacheIdx, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64), | |||
| SearchCacheIdxCPUKernel); | |||
| MS_REG_CPU_KERNEL(SearchCacheIdx, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt64), | |||
| SearchCacheIdxCPUKernel); | |||
| MS_REG_CPU_KERNEL(SearchCacheIdx, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddInputAttr(kNumberTypeInt64) | |||
| .AddOutputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32), | |||
| SearchCacheIdxCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_ | |||
| @@ -82,7 +82,8 @@ void UpdateCacheCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||
| char *tmp = update + i * one_length_size; | |||
| if (indices[i] * one_length_size + one_length_size <= max_size) { | |||
| int ret = memcpy_s(input_x + indices[i] * one_length_size, one_length_size, tmp, one_length_size); | |||
| int ret = | |||
| memcpy_s(input_x + indices[i] * one_length_size, max_size - indices[i] * one_length_size, tmp, one_length_size); | |||
| if (ret != 0) { | |||
| MS_LOG(EXCEPTION) << "memcpy_s error, errorno" << ret; | |||
| } | |||
| @@ -145,7 +145,7 @@ void MemCopyFromHostToCache(void *hashmap_addr, void *host_addr, void *cache_add | |||
| auto cache_data = static_cast<char *>(cache_addr); | |||
| auto hashmap_data = static_cast<HashmapEntry<T> *>(hashmap_addr); | |||
| // default param type float | |||
| size_t param_type_size = 4; | |||
| const size_t param_type_size = 4; | |||
| size_t single_col_bytes = param_type_size * col_size; | |||
| for (size_t i = 0; i < hashmap_size; ++i) { | |||
| if (!hashmap_data[i].IsEmpty()) { | |||
| @@ -263,8 +263,6 @@ AnfNodePtr InitHashMap(const FuncGraphPtr &func_graph, const int64_t host_size, | |||
| AnfNodePtr InitStep(const FuncGraphPtr &func_graph, TypeId type_id) { | |||
| std::vector<int64_t> host_shape{1}; | |||
| auto new_tensor = std::make_shared<tensor::Tensor>(type_id, host_shape); | |||
| auto step_data = static_cast<int64_t *>(new_tensor->data_c()); | |||
| step_data[0] = 0; | |||
| ParamInfoPtr new_param_info = std::make_shared<ParamInfo>(); | |||
| std::string step_name = "cache_step"; | |||
| new_param_info->set_name(step_name); | |||
| @@ -280,7 +280,7 @@ void MemCopyFromCacheToHost(void *hashmap_addr, void *host_addr, void *cache_add | |||
| auto cache_data = static_cast<char *>(cache_addr); | |||
| auto hashmap_data = static_cast<HashmapEntry<T> *>(hashmap_addr); | |||
| // default param type float | |||
| size_t param_type_size = 4; | |||
| const size_t param_type_size = 4; | |||
| size_t single_col_bytes = param_type_size * col_size; | |||
| for (size_t i = 0; i < hashmap_size; ++i) { | |||
| if (!hashmap_data[i].IsEmpty()) { | |||
| @@ -55,8 +55,6 @@ from .standard_normal import _standard_normal_aicpu | |||
| from .gamma import _gamma_aicpu | |||
| from .poisson import _poisson_aicpu | |||
| from .update_cache import _update_cache_aicpu | |||
| from .search_cache_idx import _search_cache_idx_aicpu | |||
| from .cache_swap_hashmap import _cache_swap_hashmap_aicpu | |||
| from .cache_swap_table import _cache_swap_table_aicpu | |||
| from .uniform_int import _uniform_int_aicpu | |||
| from .uniform_real import _uniform_real_aicpu | |||
| @@ -1,43 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """CacheSwapHashmap op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| cache_swap_hashmap_op_info = AiCPURegOp("CacheSwapHashmap") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "hashmap", "required") \ | |||
| .input(1, "miss_emb_idx", "required") \ | |||
| .input(2, "step", "required") \ | |||
| .output(0, "swap_cache_idx", "required") \ | |||
| .output(1, "old_emb_idx", "required") \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, \ | |||
| DataType.I32_Default, DataType.I32_Default, \ | |||
| DataType.I32_Default) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default, \ | |||
| DataType.I32_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default) \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, \ | |||
| DataType.I64_Default, DataType.I32_Default, \ | |||
| DataType.I32_Default) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default, DataType.I64_Default, \ | |||
| DataType.I64_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(cache_swap_hashmap_op_info) | |||
| def _cache_swap_hashmap_aicpu(): | |||
| """CacheSwapHashmap AiCPU register""" | |||
| return | |||
| @@ -1,51 +0,0 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """EmbeddingLookup op""" | |||
| from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType | |||
| search_cache_idx_op_info = AiCPURegOp("SearchCacheIdx") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .input(0, "hashmap", "required") \ | |||
| .input(1, "indices", "required") \ | |||
| .input(2, "step", "required") \ | |||
| .input(3, "emb_max_num", "required") \ | |||
| .input(4, "cache_max_num", "required") \ | |||
| .output(0, "cache_idx", "required") \ | |||
| .output(1, "miss_idx_1d", "required") \ | |||
| .output(2, "miss_emb_idx", "required") \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, | |||
| DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, | |||
| DataType.I32_Default, DataType.I32_Default, | |||
| DataType.I32_Default) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default, | |||
| DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, | |||
| DataType.I64_Default, DataType.I64_Default, | |||
| DataType.I64_Default) \ | |||
| .dtype_format(DataType.I32_Default, DataType.I32_Default, | |||
| DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, | |||
| DataType.I32_Default, DataType.I32_Default, | |||
| DataType.I32_Default) \ | |||
| .dtype_format(DataType.I64_Default, DataType.I64_Default, | |||
| DataType.I64_Default, DataType.I64_Default, DataType.I64_Default, | |||
| DataType.I64_Default, DataType.I64_Default, | |||
| DataType.I64_Default) \ | |||
| .get_op_info() | |||
| @op_info_register(search_cache_idx_op_info) | |||
| def _search_cache_idx_aicpu(): | |||
| """SearchCacheIdx AiCPU register""" | |||
| return | |||
| @@ -95,8 +95,7 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg | |||
| CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky, CholeskyTrsm, DetTriangle, | |||
| ProdForceSeA) | |||
| from .sparse_ops import (SparseToDense, SparseTensorDenseMatmul) | |||
| from ._embedding_cache_ops import (CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, | |||
| SubAndFilter, | |||
| from ._embedding_cache_ops import (CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter, | |||
| MapUniform, DynamicAssign, PadAndShift) | |||
| from .quantum_ops import PQC, Evolution | |||
| from .sponge_ops import (BondForce, BondEnergy, BondAtomEnergy, BondForceWithAtomEnergy, BondForceWithAtomVirial, | |||
| @@ -15,7 +15,7 @@ | |||
| """cache_ops""" | |||
| from ..._checkparam import Validator as validator | |||
| from ...common import dtype as mstype | |||
| from ..primitive import PrimitiveWithInfer, prim_attr_register, PrimitiveWithCheck | |||
| from ..primitive import prim_attr_register, PrimitiveWithCheck | |||
| from .. import signature as sig | |||
| @@ -30,7 +30,7 @@ class UpdateCache(PrimitiveWithCheck): | |||
| - **updates** (Tensor) - The update values. | |||
| Outputs: | |||
| - **out** (Tensor) - Returns a [1] Tensor, which is not usefull. | |||
| - **out** (Tensor) - Returns a [1] Tensor, which is not useful. | |||
| """ | |||
| __mindspore_signature__ = ( | |||
| sig.make_sig('input_x', sig.sig_rw.RW_WRITE, | |||
| @@ -101,92 +101,6 @@ class SubAndFilter(PrimitiveWithCheck): | |||
| return input_x_dtype | |||
| class SearchCacheIdx(PrimitiveWithInfer): | |||
| """ | |||
| Search the keys of a hashmap, and return the values. | |||
| Inputs: | |||
| - **hashmap** (Parameter) - The dim of hashmap is (n, 4), which cols represent the `key, value, step, tag`. | |||
| `key, value`: Map the indices of big table and cache table. | |||
| `step`: The resent step, when searching the key, it will be updated at the same time. | |||
| `step` can make sure the indices which are using in the last step will not be deleted in hashmap. | |||
| `tag`: We use linear probing(`h(k, i) = (h(k) + i) % m`) to solve hash conflicts. | |||
| tag is the count of linear probing times of the key. If `tag == 0`, means that the entry is empty. | |||
| The Hash Function is: | |||
| `((0.6180339 * key) - floor(0.618033 * key)) * hashmap_length`, in order to avoid data clustering. | |||
| - **indices** (Tensor) - The indices which are keys of hashmap. | |||
| - **step** (int) - The current step when searching. | |||
| - **emb_max_num** (int) - Max length of big table. | |||
| To avoid searching when `indices >= emb_max_num`, and make value = `cache_max_num`. | |||
| - **cache_max_num** (int) - Max length of cache table. | |||
| Outputs: | |||
| - **cache_idx** (Tensor) - Result of searched value, if search missed, value = -1. | |||
| - **miss_idx** (Tensor) - The index of Tensor indices which search missed. | |||
| If search success, miss_idx[i] = -1. | |||
| - **miss_emb_idx** (Tensor) - The value of Tensor indices which search missed. | |||
| If search success, miss_emb_idx[i] = -1. | |||
| Examples: | |||
| >>> hashmap = Parameter(Tensor(np.array([[0, 0, 0, 0], | |||
| [10, 5, -5, 1], | |||
| [2, 1, -5, 1], | |||
| [15, 7, -5, 2], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [3, 3, -5, 1], | |||
| [21, 9, -5, 1]], np.int32)), name="hashmap") | |||
| >>> indices = Tensor(np.array([10, 2, 25, 5, 3], np.int32)) | |||
| >>> step = 0, emb_max_num = 25, cache_max_num = 10 | |||
| >>> ops = ops.SearchCacheIdx() | |||
| >>> cache_idx, miss_idx, miss_emb_idx = ops(hashmap, indices, step, emb_max_num, cache_max_num) | |||
| cache_idx : [5, 1, 10, -1, 3] | |||
| miss_idx : [-1, -1, -1, 3, -1] | |||
| miss_emb_idx : [-1, -1, -1, 5, -1] | |||
| hashmap after search : [[0, 0, 0, 0], | |||
| [10, 5, 0, 1], | |||
| [2, 1, 0, 1], | |||
| [15, 7, -5, 2], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [3, 3, 0, 1], | |||
| [21, 9, -5, 1]] | |||
| """ | |||
| __mindspore_signature__ = ( | |||
| sig.make_sig('hashmap', sig.sig_rw.RW_WRITE, | |||
| dtype=sig.sig_dtype.T), | |||
| sig.make_sig('indices', dtype=sig.sig_dtype.T), | |||
| sig.make_sig('step', dtype=sig.sig_dtype.T), | |||
| sig.make_sig('emb_max_num', dtype=sig.sig_dtype.T), | |||
| sig.make_sig('cache_max_num', dtype=sig.sig_dtype.T) | |||
| ) | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| """init SearchCacheIdx""" | |||
| self.init_prim_io_names(inputs=['hashmap', 'indices', 'step', 'emb_max_num', 'cache_max_num'], | |||
| outputs=['cache_idx', 'miss_idx', 'miss_emb_idx']) | |||
| def infer_shape(self, hashmap_shape, indices_shape, step_shape, emb_max_num_shape, cache_max_num_shape): | |||
| if len(hashmap_shape) != 2: | |||
| raise ValueError("The dimension of 'hashmap' in SearchCacheIdx must be 2, " | |||
| "but got %d." % len(hashmap_shape)) | |||
| out_shape = (indices_shape, indices_shape, indices_shape) | |||
| return out_shape | |||
| def infer_dtype(self, hashmap_dtype, indices_dtype, step_dtype, emb_max_num_dtype, cache_max_num_dtype): | |||
| args = {"hashmap": hashmap_dtype, "indices": indices_dtype} | |||
| validator.check_tensors_dtypes_same_and_valid( | |||
| args, mstype.int_type, self.name) | |||
| out_dtype = (hashmap_dtype, hashmap_dtype, hashmap_dtype) | |||
| return out_dtype | |||
| class MapUniform(PrimitiveWithCheck): | |||
| """ | |||
| Map a tensor by using fomula : value = key % `group_num` * `per_group_size` + key // `group_num`. | |||
| @@ -227,48 +141,6 @@ class MapUniform(PrimitiveWithCheck): | |||
| 'group_num', group_num_dtype, [mstype.Int], self.name) | |||
| class CacheSwapHashmap(PrimitiveWithInfer): | |||
| """ | |||
| Delete a hashmap entry,and insert a new key to hashmap, return the key and value of delete entry. | |||
| Inputs: | |||
| - **hashmap** (Parameter) - Same to operation SearchCacheIdx. | |||
| - **miss_emb_idx** (Tensor) - The keys which are going to insert, -1 is skipped. It is the result | |||
| - **step** (int) - The current step. | |||
| Outputs: | |||
| - **swap_cache_idx** (Tensor) - Deleted value of entry, -1 is skipped. | |||
| - **old_emb_idx** (Tensor) - Deleted key of entry, -1 is skipped. | |||
| """ | |||
| __mindspore_signature__ = ( | |||
| sig.make_sig('hashmap', sig.sig_rw.RW_WRITE, | |||
| dtype=sig.sig_dtype.T), | |||
| sig.make_sig('miss_emb_idx', dtype=sig.sig_dtype.T), | |||
| sig.make_sig('step', dtype=sig.sig_dtype.T) | |||
| ) | |||
| @prim_attr_register | |||
| def __init__(self): | |||
| """init CacheSwapHashmap""" | |||
| self.init_prim_io_names(inputs=['hashmap', 'miss_emb_idx', 'step'], | |||
| outputs=['swap_cache_idx', 'old_emb_idx']) | |||
| def infer_shape(self, hashmap_shape, miss_emb_idx_shape, step_shape): | |||
| if len(hashmap_shape) != 2: | |||
| raise ValueError("The dimension of 'hashmap' in CacheSwapHashmap must be 2, " | |||
| "but got %d." % len(hashmap_shape)) | |||
| out_shape = (miss_emb_idx_shape, miss_emb_idx_shape) | |||
| return out_shape | |||
| def infer_dtype(self, hashmap_dtype, miss_emb_idx_dtype, step_dtype): | |||
| validator.check_tensor_dtype_valid( | |||
| "miss_emb_idx", miss_emb_idx_dtype, mstype.int_type, self.name) | |||
| out_dtype = (miss_emb_idx_dtype, miss_emb_idx_dtype) | |||
| return out_dtype | |||
| class CacheSwapTable(PrimitiveWithCheck): | |||
| """ | |||
| Delete a hashmap entry,and insert a new key to hashmap, return the key and value of delete entry. | |||
| @@ -396,7 +268,7 @@ class PadAndShift(PrimitiveWithCheck): | |||
| Pad a tensor with -1, and shift with a length. | |||
| Inputs: | |||
| - **input_x** (Tensor) - The input Tensor, which will be copyed | |||
| - **input_x** (Tensor) - The input Tensor, which will be copied | |||
| to `output`. | |||
| - **cum_sum_arr** (Tensor) - The last value of cum_sum_arr is | |||
| the pad length of output tensor, cum_sum_arr[shift_idx] is | |||
| @@ -12,7 +12,6 @@ | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import math | |||
| import numpy as np | |||
| import pytest | |||
| @@ -26,55 +25,6 @@ context.set_context(mode=context.GRAPH_MODE, | |||
| device_target='CPU', save_graphs=True) | |||
| def hash_func(key, length): | |||
| return (int)(((0.6180339 * key) - math.floor(0.6180339 * key)) * length) | |||
| def init_hashmap(hash_map_length): | |||
| key_np = np.array([2, 3, 10, 15, 21], np.int32) | |||
| value_np = np.array([1, 3, 5, 7, 9], np.int32) | |||
| NULLTAG = 0 | |||
| INIT_STEP = -5 | |||
| hashmap_np = np.zeros((hash_map_length, 4), np.int32) | |||
| for i, key in enumerate(key_np): | |||
| entry = hash_func(key, hash_map_length) | |||
| count = 1 | |||
| while (hashmap_np[entry, 3] != NULLTAG and hashmap_np[entry, 0] != key): | |||
| count += 1 | |||
| entry = (entry + 1) % hash_map_length | |||
| if (hashmap_np[entry, 3] == NULLTAG): | |||
| hashmap_np[entry] = [key, value_np[i], INIT_STEP, count] | |||
| return hashmap_np | |||
| class SearchCacheIdxNet(nn.Cell): | |||
| def __init__(self, hashmap_np): | |||
| super().__init__() | |||
| self.ops = P.SearchCacheIdx() | |||
| self.hashmap = Parameter(Tensor(hashmap_np), name="hashmap") | |||
| self.emb_max = 25 | |||
| self.cache_max = 10 | |||
| self.step = 0 | |||
| def construct(self, indices): | |||
| return self.ops(self.hashmap, indices, self.step, self.emb_max, self.cache_max) | |||
| class CacheSwapHashmapNet(nn.Cell): | |||
| def __init__(self, hashmap_np): | |||
| super().__init__() | |||
| self.net = SearchCacheIdxNet(hashmap_np) | |||
| self.ops = P.CacheSwapHashmap() | |||
| self.step = 0 | |||
| self.emb_max = 25 | |||
| self.cache_max = 10 | |||
| def construct(self, indices): | |||
| _, _, miss_emb_idx = self.net(indices) | |||
| return self.ops(self.net.hashmap, miss_emb_idx, self.step) | |||
| class UpdateCacheNet(nn.Cell): | |||
| def __init__(self, x): | |||
| super().__init__() | |||
| @@ -86,72 +36,6 @@ class UpdateCacheNet(nn.Cell): | |||
| return self.ops(self.x, indices, update, self.max_num) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_search_cache_idx(): | |||
| hashmap_np = init_hashmap(10) | |||
| indices_np = np.array([10, 2, 20, 5, 3], np.int32) | |||
| search_cache_idx = SearchCacheIdxNet(hashmap_np) | |||
| indices = Tensor(indices_np) | |||
| cache_idx, miss_idx, miss_emb_idx = search_cache_idx(indices) | |||
| expect_cache_idx = [5, 1, -1, -1, 3] | |||
| expect_miss_idx = [-1, -1, 2, 3, -1] | |||
| expect_miss_emb_idx = [-1, -1, 20, 5, -1] | |||
| hashmap_np_after_ops = [[0, 0, 0, 0], | |||
| [10, 5, 0, 1], | |||
| [2, 1, 0, 1], | |||
| [15, 7, -5, 2], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [3, 3, 0, 1], | |||
| [21, 9, -5, 1]] | |||
| assert np.allclose(cache_idx.asnumpy(), | |||
| np.array(expect_cache_idx, np.int32)) | |||
| assert np.allclose(miss_idx.asnumpy(), np.array(expect_miss_idx, np.int32)) | |||
| assert np.allclose(miss_emb_idx.asnumpy(), | |||
| np.array(expect_miss_emb_idx, np.int32)) | |||
| assert np.allclose(search_cache_idx.hashmap.data.asnumpy(), | |||
| np.array(hashmap_np_after_ops, np.int32)) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_cache_swap_hashmap(): | |||
| hashmap_np = init_hashmap(10) | |||
| indices_np = np.array([10, 2, 20, 5, 3], np.int32) | |||
| net = CacheSwapHashmapNet(hashmap_np) | |||
| indices = Tensor(indices_np) | |||
| swap_cache_idx, old_emb_idx = net(indices) | |||
| expect_swap_cache_idx = [-1, -1, 9, 7, -1] | |||
| expect_old_emb_idx = [-1, -1, 21, 15, -1] | |||
| hashmap_np_after_ops = [[5, 7, 0, 1], | |||
| [10, 5, 0, 1], | |||
| [2, 1, 0, 1], | |||
| [20, 9, 0, 1], | |||
| [20, 9, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [3, 3, 0, 1], | |||
| [21, 9, -5, 0]] | |||
| assert np.allclose(swap_cache_idx.asnumpy(), | |||
| np.array(expect_swap_cache_idx, np.int32)) | |||
| assert np.allclose(old_emb_idx.asnumpy(), | |||
| np.array(expect_old_emb_idx, np.int32)) | |||
| assert np.allclose(net.net.hashmap.data.asnumpy(), | |||
| np.array(hashmap_np_after_ops, np.int32)) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||