Merge pull request !5961 from xulei/lite_test0905tags/v1.0.0
| @@ -116,7 +116,7 @@ checkopts() | |||
| DEBUG_MODE="on" | |||
| ;; | |||
| n) | |||
| if [[ "X$OPTARG" == "Xoff" || "X$OPTARG" == "Xlite" || "X$OPTARG" == "Xfull" ]]; then | |||
| if [[ "X$OPTARG" == "Xoff" || "X$OPTARG" == "Xlite" || "X$OPTARG" == "Xfull" || "X$OPTARG" == "Xlite_cv" ]]; then | |||
| COMPILE_MINDDATA_LITE="$OPTARG" | |||
| else | |||
| echo "Invalid value ${OPTARG} for option -n" | |||
| @@ -40,6 +40,18 @@ if (BUILD_MINDDATA STREQUAL "lite") | |||
| endif () | |||
| endif () | |||
| if (BUILD_MINDDATA STREQUAL "lite_cv") | |||
| install(DIRECTORY ${TOP_DIR}/mindspore/ccsrc/minddata/dataset/kernels/image/lite_cv DESTINATION ${INC_DIR} COMPONENT ${COMPONENT_NAME} FILES_MATCHING PATTERN "*.h") | |||
| if (PLATFORM_ARM64) | |||
| install(FILES ${TOP_DIR}/mindspore/lite/build/minddata/libminddata-lite.so DESTINATION ${LIB_DIR} COMPONENT ${COMPONENT_NAME}) | |||
| elseif (PLATFORM_ARM32) | |||
| install(FILES ${TOP_DIR}/mindspore/lite/build/minddata/libminddata-lite.so DESTINATION ${LIB_DIR} COMPONENT ${COMPONENT_NAME}) | |||
| else () | |||
| install(FILES ${TOP_DIR}/mindspore/lite/build/minddata/libminddata-lite.so DESTINATION ${LIB_DIR_RUN_X86} COMPONENT ${RUN_X86_COMPONENT_NAME}) | |||
| endif () | |||
| endif () | |||
| if (PLATFORM_ARM64) | |||
| install(FILES ${TOP_DIR}/mindspore/lite/build/src/libmindspore-lite.so DESTINATION ${LIB_DIR} COMPONENT ${COMPONENT_NAME}) | |||
| install(FILES ${TOP_DIR}/mindspore/core/ir/dtype/type_id.h DESTINATION ${INC_DIR}/ir/dtype COMPONENT ${COMPONENT_NAME}) | |||
| @@ -43,6 +43,8 @@ include_directories(${CMAKE_BINARY_DIR}) # for protobuf generated .h | |||
| include_directories(${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/mindrecord/include) | |||
| include_directories(${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/include) | |||
| include_directories(${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/kernels/image) | |||
| ###################################################################### | |||
| ####################### Flags ######################################## | |||
| @@ -94,6 +96,7 @@ set(submodules | |||
| $<TARGET_OBJECTS:utils> | |||
| $<TARGET_OBJECTS:kernels> | |||
| $<TARGET_OBJECTS:kernels-image> | |||
| $<TARGET_OBJECTS:lite-cv> | |||
| $<TARGET_OBJECTS:kernels-data> | |||
| $<TARGET_OBJECTS:cpp-API> | |||
| $<TARGET_OBJECTS:kernels-soft-dvpp-image> | |||
| @@ -1,6 +1,7 @@ | |||
| file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc") | |||
| set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD) | |||
| add_subdirectory(soft_dvpp) | |||
| add_subdirectory(lite_cv) | |||
| add_library(kernels-image OBJECT | |||
| affine_op.cc | |||
| auto_contrast_op.cc | |||
| @@ -49,4 +50,4 @@ add_library(kernels-image OBJECT | |||
| random_resize_with_bbox_op.cc | |||
| random_color_op.cc | |||
| ) | |||
| add_dependencies(kernels-image kernels-soft-dvpp-image) | |||
| add_dependencies(kernels-image kernels-soft-dvpp-image ) | |||
| @@ -0,0 +1,5 @@ | |||
| file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc") | |||
| set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD) | |||
| add_library(lite-cv OBJECT | |||
| image_process.cc | |||
| lite_mat.cc) | |||
| @@ -0,0 +1,604 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "lite_cv/image_process.h" | |||
| #include <string.h> | |||
| #include <math.h> | |||
| #include <vector> | |||
| #include <algorithm> | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| static inline void InitBilinearWeight(int *data_ptr, int16_t *weight_ptr, double scale, int dst_length, int src_length, | |||
| int a) { | |||
| const int RESIZE_SCALE = 1 << 11; | |||
| if (data_ptr == nullptr || weight_ptr == nullptr) { | |||
| return; | |||
| } | |||
| int *data_start_ptr = data_ptr; | |||
| int16_t *weight_start_ptr = weight_ptr; | |||
| for (unsigned int i = 0; i < dst_length; i++) { | |||
| float src_f_x = static_cast<float>((i + 0.5) * scale - 0.5); | |||
| int src_u_x = static_cast<int>(floor(src_f_x)); | |||
| src_f_x -= src_u_x; | |||
| if (src_u_x < 0) { | |||
| src_u_x = 0; | |||
| src_f_x = 0.0f; | |||
| } | |||
| if (src_u_x >= src_length - 1) { | |||
| src_u_x = src_length - 2; | |||
| src_f_x = 1.0f; | |||
| } | |||
| data_start_ptr[i] = src_u_x * a; | |||
| int16_t t0 = INT16_CAST((1.0f - src_f_x) * RESIZE_SCALE); | |||
| int16_t t1 = INT16_CAST(src_f_x * RESIZE_SCALE); | |||
| weight_start_ptr[i * 2] = t0; | |||
| weight_start_ptr[i * 2 + 1] = t1; | |||
| } | |||
| } | |||
| static void ResizeBilinear3C(const unsigned char *src, int src_width, int src_height, unsigned char *dst, int dst_width, | |||
| int dst_height) { | |||
| double scale_width = static_cast<double>(src_width) / dst_width; | |||
| double scale_height = static_cast<double>(src_height) / dst_height; | |||
| int *data_buf = new int[2 * dst_width + 2 * dst_height]; | |||
| int *x_offset = data_buf; | |||
| int *y_offset = data_buf + dst_width; | |||
| int16_t *x_weight = reinterpret_cast<int16_t *>(data_buf + dst_width + dst_height); | |||
| int16_t *y_weight = reinterpret_cast<int16_t *>(x_weight + dst_width); | |||
| InitBilinearWeight(x_offset, x_weight, scale_width, dst_width, src_width, 3); | |||
| InitBilinearWeight(y_offset, y_weight, scale_height, dst_height, src_height, 1); | |||
| LiteMat x_tmp_buf0(dst_width * 3 + 1, LDataType::UINT16); | |||
| LiteMat x_tmp_buf1(dst_width * 3 + 1, LDataType::UINT16); | |||
| int16_t *row0_ptr = reinterpret_cast<int16_t *>(x_tmp_buf0.data_ptr_); | |||
| int16_t *row1_ptr = reinterpret_cast<int16_t *>(x_tmp_buf1.data_ptr_); | |||
| int prev_height = -2; | |||
| for (int y = 0; y < dst_height; y++) { | |||
| int y_span = y_offset[y]; | |||
| if (y_span == prev_height) { | |||
| } else if (y_span == prev_height + 1) { | |||
| int16_t *tmp = row0_ptr; | |||
| row0_ptr = row1_ptr; | |||
| row1_ptr = tmp; | |||
| const unsigned char *src_start = src + 3 * src_width * (y_span + 1); | |||
| const int16_t *x_weight_p = x_weight; | |||
| int16_t *row1_ptr1 = row1_ptr; | |||
| for (int x = 0; x < dst_width; x++) { | |||
| const unsigned char *src_start_p = src_start + x_offset[x]; | |||
| row1_ptr1[0] = (src_start_p[0] * x_weight_p[0] + src_start_p[3] * x_weight_p[1]) >> 4; | |||
| row1_ptr1[1] = (src_start_p[1] * x_weight_p[0] + src_start_p[4] * x_weight_p[1]) >> 4; | |||
| row1_ptr1[2] = (src_start_p[2] * x_weight_p[0] + src_start_p[5] * x_weight_p[1]) >> 4; | |||
| x_weight_p += 2; | |||
| row1_ptr1 += 3; | |||
| } | |||
| } else { | |||
| const unsigned char *src0 = src + 3 * src_width * (y_span); | |||
| const unsigned char *src1 = src + 3 * src_width * (y_span + 1); | |||
| const int16_t *x_weight_ptr = x_weight; | |||
| int16_t *row0_ptr0 = row0_ptr; | |||
| int16_t *row1_ptr1 = row1_ptr; | |||
| for (int x = 0; x < dst_width; x++) { | |||
| const unsigned char *src0_ptr = src0 + x_offset[x]; | |||
| const unsigned char *src1_ptr = src1 + x_offset[x]; | |||
| for (int c = 0; c < 3; c++) { | |||
| row0_ptr0[c] = (src0_ptr[c] * x_weight_ptr[0] + src0_ptr[c + 3] * x_weight_ptr[1]) >> 4; | |||
| row1_ptr1[c] = (src1_ptr[c] * x_weight_ptr[0] + src1_ptr[c + 3] * x_weight_ptr[1]) >> 4; | |||
| } | |||
| x_weight_ptr += 2; | |||
| row0_ptr0 += 3; | |||
| row1_ptr1 += 3; | |||
| } | |||
| } | |||
| prev_height = y_span; | |||
| int16_t *row0_ptr0 = row0_ptr; | |||
| int16_t *row1_ptr1 = row1_ptr; | |||
| unsigned char *dst_ptr = dst + dst_width * 3 * (y); | |||
| for (int k = 0; k < dst_width * 3; k++) { | |||
| int16_t t0 = (int16_t)((y_weight[0] * (int16_t)(*row0_ptr0++)) >> 16); | |||
| int16_t t1 = (int16_t)((y_weight[1] * (int16_t)(*row1_ptr1++)) >> 16); | |||
| *dst_ptr++ = (unsigned char)((t0 + t1 + 2) >> 2); | |||
| } | |||
| y_weight += 2; | |||
| } | |||
| delete[] data_buf; | |||
| } | |||
| static void ResizeBilinear1C(const unsigned char *src, int src_width, int src_height, unsigned char *dst, int dst_width, | |||
| int dst_height) { | |||
| double scale_width = static_cast<double>(src_width) / dst_width; | |||
| double scale_height = static_cast<double>(src_height) / dst_height; | |||
| int *data_buf = new int[2 * dst_width + 2 * dst_height]; | |||
| int *x_offset = data_buf; | |||
| int *y_offset = data_buf + dst_width; | |||
| int16_t *x_weight = reinterpret_cast<int16_t *>(data_buf + dst_width + dst_height); | |||
| int16_t *y_weight = reinterpret_cast<int16_t *>(x_weight + dst_width); | |||
| InitBilinearWeight(x_offset, x_weight, scale_width, dst_width, src_width, 1); | |||
| InitBilinearWeight(y_offset, y_weight, scale_height, dst_height, src_height, 1); | |||
| LiteMat x_tmp_buf0(dst_width, LDataType::UINT16); | |||
| LiteMat x_tmp_buf1(dst_width, LDataType::UINT16); | |||
| int16_t *row0_ptr = reinterpret_cast<int16_t *>(x_tmp_buf0.data_ptr_); | |||
| int16_t *row1_ptr = reinterpret_cast<int16_t *>(x_tmp_buf1.data_ptr_); | |||
| int prev_height = -2; | |||
| for (int y = 0; y < dst_height; y++) { | |||
| int y_span = y_offset[y]; | |||
| if (y_span == prev_height) { | |||
| } else if (y_span == prev_height + 1) { | |||
| int16_t *tmp = row0_ptr; | |||
| row0_ptr = row1_ptr; | |||
| row1_ptr = tmp; | |||
| const unsigned char *src_start = src + src_width * (y_span + 1); | |||
| const int16_t *x_weight_p = x_weight; | |||
| int16_t *row1_ptr1 = row1_ptr; | |||
| for (int x = 0; x < dst_width; x++) { | |||
| const unsigned char *src_start_p = src_start + x_offset[x]; | |||
| row1_ptr1[x] = (src_start_p[0] * x_weight_p[0] + src_start_p[3] * x_weight_p[1]) >> 4; | |||
| x_weight_p += 2; | |||
| } | |||
| } else { | |||
| const unsigned char *src0 = src + src_width * (y_span); | |||
| const unsigned char *src1 = src + src_width * (y_span + 1); | |||
| const int16_t *x_weight_ptr = x_weight; | |||
| int16_t *row0_ptr0 = row0_ptr; | |||
| int16_t *row1_ptr1 = row1_ptr; | |||
| for (int x = 0; x < dst_width; x++) { | |||
| const unsigned char *src0_ptr = src0 + x_offset[x]; | |||
| const unsigned char *src1_ptr = src1 + x_offset[x]; | |||
| row0_ptr0[x] = (src0_ptr[0] * x_weight_ptr[0] + src0_ptr[3] * x_weight_ptr[1]) >> 4; | |||
| row1_ptr1[x] = (src1_ptr[0] * x_weight_ptr[0] + src1_ptr[3] * x_weight_ptr[1]) >> 4; | |||
| x_weight_ptr += 2; | |||
| } | |||
| } | |||
| prev_height = y_span; | |||
| int16_t *row0_ptr0 = row0_ptr; | |||
| int16_t *row1_ptr1 = row1_ptr; | |||
| unsigned char *dst_ptr = dst + dst_width * (y); | |||
| for (int k = 0; k < dst_width; k++) { | |||
| int16_t t0 = (int16_t)((y_weight[0] * (int16_t)(*row0_ptr0++)) >> 16); | |||
| int16_t t1 = (int16_t)((y_weight[1] * (int16_t)(*row1_ptr1++)) >> 16); | |||
| *dst_ptr++ = (unsigned char)((t0 + t1 + 2) >> 2); | |||
| } | |||
| y_weight += 2; | |||
| } | |||
| delete[] data_buf; | |||
| } | |||
| bool ResizeBilinear(const LiteMat &src, LiteMat &dst, int dst_w, int dst_h) { | |||
| if (src.data_type_ != LDataType::UINT8) { | |||
| return false; | |||
| } | |||
| if (src.channel_ == 3) { | |||
| (void)dst.Init(dst_w, dst_h, 3, LDataType::UINT8); | |||
| const unsigned char *src_start_p = src; | |||
| unsigned char *dst_start_p = dst; | |||
| (void)ResizeBilinear3C(src_start_p, src.width_, src.height_, dst_start_p, dst_w, dst_h); | |||
| } else if (src.channel_ == 1) { | |||
| (void)dst.Init(dst_w, dst_h, 1, LDataType::UINT8); | |||
| const unsigned char *src_start_p = src; | |||
| unsigned char *dst_start_p = dst; | |||
| (void)ResizeBilinear1C(src_start_p, src.width_, src.height_, dst_start_p, dst_w, dst_h); | |||
| } else { | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| static bool ConvertRGBAToBGR(const unsigned char *data, LDataType data_type, int w, int h, LiteMat &mat) { | |||
| if (data_type == LDataType::UINT8) { | |||
| mat.Init(w, h, 3, LDataType::UINT8); | |||
| unsigned char *ptr = mat; | |||
| const unsigned char *data_ptr = data; | |||
| for (int y = 0; y < h; y++) { | |||
| for (int x = 0; x < w; x++) { | |||
| ptr[0] = data_ptr[2]; | |||
| ptr[1] = data_ptr[1]; | |||
| ptr[2] = data_ptr[0]; | |||
| ptr += 3; | |||
| data_ptr += 4; | |||
| } | |||
| } | |||
| } else { | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| static bool ConvertRGBAToGRAY(const unsigned char *data, LDataType data_type, int w, int h, LiteMat &mat) { | |||
| if (data_type == LDataType::UINT8) { | |||
| mat.Init(w, h, 1, LDataType::UINT8); | |||
| if (mat.IsEmpty()) { | |||
| return false; | |||
| } | |||
| unsigned char *ptr = mat; | |||
| const unsigned char *data_ptr = data; | |||
| for (int y = 0; y < h; y++) { | |||
| for (int x = 0; x < w; x++) { | |||
| *ptr = (data_ptr[2] * B2GRAY + data_ptr[1] * G2GRAY + data_ptr[0] * R2GRAY) >> GRAYSHIFT; | |||
| ptr++; | |||
| data_ptr += 4; | |||
| } | |||
| } | |||
| } else { | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| bool InitFromPixel(const unsigned char *data, LPixelType pixel_type, LDataType data_type, int w, int h, LiteMat &m) { | |||
| if (pixel_type == LPixelType::RGBA2BGR) { | |||
| return ConvertRGBAToBGR(data, data_type, w, h, m); | |||
| } else if (pixel_type == LPixelType::RGBA2GRAY) { | |||
| return ConvertRGBAToGRAY(data, data_type, w, h, m); | |||
| } else { | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| bool ConvertTo(const LiteMat &src, LiteMat &dst, double scale) { | |||
| if (src.data_type_ != LDataType::UINT8) { | |||
| return false; | |||
| } | |||
| (void)dst.Init(src.width_, src.height_, src.channel_, LDataType::FLOAT32); | |||
| const unsigned char *src_start_p = src; | |||
| float *dst_start_p = dst; | |||
| for (int h = 0; h < src.height_; h++) { | |||
| for (int w = 0; w < src.width_; w++) { | |||
| for (int c = 0; c < src.channel_; c++) { | |||
| int index = (h * src.width_ + w) * src.channel_; | |||
| dst_start_p[index + c] = (static_cast<float>(src_start_p[index + c] * scale)); | |||
| } | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| template <typename T> | |||
| static void CropInternal(const LiteMat &src, LiteMat &dst, int x, int y, int w, int h) { | |||
| int dst_h = h; | |||
| int dst_w = w; | |||
| int dst_c = src.channel_; | |||
| dst.Init(dst_w, dst_h, dst_c, src.data_type_); | |||
| const T *src_start_p = src; | |||
| T *dst_start_p = dst; | |||
| for (int i_h = 0; i_h < dst_h; i_h++) { | |||
| const T *src_index_p = src_start_p + (y + i_h) * src.width_ * dst_c + x * dst_c; | |||
| T *dst_index_p = dst_start_p + i_h * dst_w * dst_c; | |||
| (void)memcpy(dst_index_p, src_index_p, dst_w * dst_c * sizeof(T)); | |||
| } | |||
| } | |||
| bool Crop(const LiteMat &src, LiteMat &dst, int x, int y, int w, int h) { | |||
| if (y < 0 || y + h > src.height_ || x < 0 || x + w > src.width_) { | |||
| return false; | |||
| } | |||
| if (src.data_type_ == LDataType::UINT8) { | |||
| CropInternal<uint8_t>(src, dst, x, y, w, h); | |||
| } else if (src.data_type_ == LDataType::FLOAT32) { | |||
| CropInternal<float>(src, dst, x, y, w, h); | |||
| } else { | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| bool SubStractMeanNormalize(const LiteMat &src, LiteMat &dst, float *mean, float *norm) { | |||
| if (src.data_type_ != LDataType::FLOAT32) { | |||
| return false; | |||
| } | |||
| dst.Init(src.width_, src.height_, src.channel_, LDataType::FLOAT32); | |||
| const float *src_start_p = src; | |||
| float *dst_start_p = dst; | |||
| if (mean && !norm) { | |||
| for (int h = 0; h < src.height_; h++) { | |||
| for (int w = 0; w < src.width_; w++) { | |||
| for (int c = 0; c < src.channel_; c++) { | |||
| int index = (h * src.width_ + w) * src.channel_ + c; | |||
| dst_start_p[index] = src_start_p[index] - mean[c]; | |||
| } | |||
| } | |||
| } | |||
| } else if (!mean && norm) { | |||
| for (int h = 0; h < src.height_; h++) { | |||
| for (int w = 0; w < src.width_; w++) { | |||
| for (int c = 0; c < src.channel_; c++) { | |||
| int index = (h * src.width_ + w) * src.channel_ + c; | |||
| dst_start_p[index] = src_start_p[index] * norm[c]; | |||
| } | |||
| } | |||
| } | |||
| } else if (mean && norm) { | |||
| for (int h = 0; h < src.height_; h++) { | |||
| for (int w = 0; w < src.width_; w++) { | |||
| for (int c = 0; c < src.channel_; c++) { | |||
| int index = (h * src.width_ + w) * src.channel_ + c; | |||
| dst_start_p[index] = (src_start_p[index] - mean[c]) * norm[c]; | |||
| } | |||
| } | |||
| } | |||
| } else { | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| template <typename T> | |||
| static void PaddWithConstant(const LiteMat &src, LiteMat &dst, const int top, const int bottom, const int left, | |||
| const int right, const PaddBorderType pad_type, uint8_t fill_b_or_gray, uint8_t fill_g, | |||
| uint8_t fill_r) { | |||
| dst.Init(src.width_ + left + right, src.height_ + top + bottom, src.channel_, src.data_type_); | |||
| const T *src_start_p = src; | |||
| T *dst_start_p = dst; | |||
| // padd top | |||
| for (int h = 0; h < top; h++) { | |||
| for (int w = 0; w < dst.width_; w++) { | |||
| int index = (h * dst.width_ + w) * dst.channel_; | |||
| if (dst.channel_ == 1) { | |||
| dst_start_p[index] = fill_b_or_gray; | |||
| } else if (dst.channel_ == 3) { | |||
| dst_start_p[index] = fill_b_or_gray; | |||
| dst_start_p[index + 1] = fill_g; | |||
| dst_start_p[index + 2] = fill_r; | |||
| } else { | |||
| } | |||
| } | |||
| } | |||
| // padd bottom | |||
| for (int h = dst.height_ - bottom; h < dst.height_; h++) { | |||
| for (int w = 0; w < dst.width_; w++) { | |||
| int index = (h * dst.width_ + w) * dst.channel_; | |||
| if (dst.channel_ == 1) { | |||
| dst_start_p[index] = fill_b_or_gray; | |||
| } else if (dst.channel_ == 3) { | |||
| dst_start_p[index] = fill_b_or_gray; | |||
| dst_start_p[index + 1] = fill_g; | |||
| dst_start_p[index + 2] = fill_r; | |||
| } else { | |||
| } | |||
| } | |||
| } | |||
| // padd left | |||
| for (int h = top; h < dst.height_ - bottom; h++) { | |||
| for (int w = 0; w < left; w++) { | |||
| int index = (h * dst.width_ + w) * dst.channel_; | |||
| if (dst.channel_ == 1) { | |||
| dst_start_p[index] = fill_b_or_gray; | |||
| } else if (dst.channel_ == 3) { | |||
| dst_start_p[index] = fill_b_or_gray; | |||
| dst_start_p[index + 1] = fill_g; | |||
| dst_start_p[index + 2] = fill_r; | |||
| } else { | |||
| } | |||
| } | |||
| } | |||
| // padd right | |||
| for (int h = top; h < dst.height_ - bottom; h++) { | |||
| for (int w = dst.width_ - right; w < dst.width_; w++) { | |||
| int index = (h * dst.width_ + w) * dst.channel_; | |||
| if (dst.channel_ == 1) { | |||
| dst_start_p[index] = fill_b_or_gray; | |||
| } else if (dst.channel_ == 3) { | |||
| dst_start_p[index] = fill_b_or_gray; | |||
| dst_start_p[index + 1] = fill_g; | |||
| dst_start_p[index + 2] = fill_r; | |||
| } else { | |||
| } | |||
| } | |||
| } | |||
| // image data | |||
| dst_start_p = dst_start_p + (top * dst.width_ + left) * dst.channel_; | |||
| for (int i_h = 0; i_h < src.height_; i_h++) { | |||
| const T *src_index_p = src_start_p + i_h * src.width_ * src.channel_; | |||
| T *dst_index_p = dst_start_p + i_h * dst.width_ * dst.channel_; | |||
| (void)memcpy(dst_index_p, src_index_p, src.width_ * src.channel_ * sizeof(T)); | |||
| } | |||
| } | |||
| bool Padd(const LiteMat &src, LiteMat &dst, int top, int bottom, int left, int right, PaddBorderType pad_type, | |||
| uint8_t fill_b_or_gray, uint8_t fill_g, uint8_t fill_r) { | |||
| if (pad_type == PADD_BORDER_CONSTANT && src.data_type_ == LDataType::FLOAT32) { | |||
| PaddWithConstant<float>(src, dst, top, bottom, left, right, pad_type, fill_b_or_gray, fill_g, fill_r); | |||
| } else if (pad_type == PADD_BORDER_CONSTANT && src.data_type_ == LDataType::UINT8) { | |||
| PaddWithConstant<uint8_t>(src, dst, top, bottom, left, right, pad_type, fill_b_or_gray, fill_g, fill_r); | |||
| } else { | |||
| return false; | |||
| } | |||
| return true; | |||
| } | |||
| std::vector<std::vector<float>> GetDefaultBoxes(BoxesConfig config) { | |||
| std::vector<float> fk; | |||
| float num = static_cast<float>(config.img_shape[0]); | |||
| for (int i = 0; i < config.steps.size(); i++) { | |||
| fk.push_back(num / config.steps[i]); | |||
| } | |||
| float scale_rate = (config.max_scale - config.min_scale) / (config.num_default.size() - 1); | |||
| std::vector<float> scales(config.num_default.size()); | |||
| for (int i = 0; i < scales.size(); i++) { | |||
| scales[i] = config.min_scale + scale_rate * i; | |||
| } | |||
| scales.push_back(1.0f); | |||
| std::vector<std::vector<float>> default_boxes; | |||
| for (int i = 0; i < config.feature_size.size(); i++) { | |||
| float sk1 = scales[i]; | |||
| float sk2 = scales[i + 1]; | |||
| float sk3 = sqrt(sk1 * sk2); | |||
| std::vector<std::vector<float>> all_sizes; | |||
| float w, h; | |||
| if (i == 0) { | |||
| w = sk1 * sqrt(2); | |||
| h = sk1 / sqrt(2); | |||
| all_sizes = {{0.1, 0.1}, {w, h}, {h, w}}; | |||
| } else { | |||
| all_sizes = {{sk1, sk1}}; | |||
| for (int j = 0; j < config.aspect_rations[i].size(); j++) { | |||
| w = sk1 * sqrt(config.aspect_rations[i][j]); | |||
| h = sk1 / sqrt(config.aspect_rations[i][j]); | |||
| all_sizes.push_back({w, h}); | |||
| all_sizes.push_back({h, w}); | |||
| } | |||
| all_sizes.push_back({sk3, sk3}); | |||
| } | |||
| for (int j = 0; j < config.feature_size[i]; j++) { | |||
| for (int k = 0; k < config.feature_size[i]; k++) { | |||
| for (int m = 0; m < all_sizes.size(); m++) { | |||
| float cx = (k + 0.5) / fk[i]; | |||
| float cy = (j + 0.5) / fk[i]; | |||
| default_boxes.push_back({cy, cx, all_sizes[m][1], all_sizes[m][0]}); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| return default_boxes; | |||
| } | |||
| void ConvertBoxes(std::vector<std::vector<float>> &boxes, const std::vector<std::vector<float>> &default_boxes, | |||
| const BoxesConfig config) { | |||
| for (int i = 0; i < default_boxes.size(); i++) { | |||
| boxes[i][0] = boxes[i][0] * config.prior_scaling[0] * default_boxes[i][2] + default_boxes[i][0]; | |||
| boxes[i][1] = boxes[i][1] * config.prior_scaling[0] * default_boxes[i][3] + default_boxes[i][1]; | |||
| boxes[i][2] = exp(boxes[i][2] * config.prior_scaling[1]) * default_boxes[i][2]; | |||
| boxes[i][3] = exp(boxes[i][3] * config.prior_scaling[1]) * default_boxes[i][3]; | |||
| } | |||
| } | |||
| std::vector<int> ApplyNms(const std::vector<std::vector<float>> &all_boxes, std::vector<float> &all_scores, float thres, | |||
| int max_boxes) { | |||
| int boxes_num = all_boxes.size(); | |||
| std::vector<float> y1(boxes_num); | |||
| std::vector<float> x1(boxes_num); | |||
| std::vector<float> y2(boxes_num); | |||
| std::vector<float> x2(boxes_num); | |||
| std::vector<float> areas(boxes_num); | |||
| std::vector<int> order(boxes_num); | |||
| for (int i = 0; i < boxes_num; i++) { | |||
| y1[i] = all_boxes[i][0]; | |||
| x1[i] = all_boxes[i][1]; | |||
| y2[i] = all_boxes[i][2]; | |||
| x2[i] = all_boxes[i][3]; | |||
| areas[i] = (x2[i] - x1[i] + 1) * (y2[i] - y1[i] + 1); | |||
| order[i] = i; | |||
| } | |||
| std::sort(order.begin(), order.end(), | |||
| [&all_scores](int pos1, int pos2) { return (all_scores[pos1] > all_scores[pos2]); }); | |||
| std::vector<int> keep; | |||
| while (order.size() > 0) { | |||
| int i = order[0]; | |||
| keep.push_back(i); | |||
| if (keep.size() >= max_boxes) { | |||
| break; | |||
| } | |||
| int len = order.size() - 1; | |||
| std::vector<float> ovr(len); | |||
| for (int j = 0; j < len; j++) { | |||
| float xx1 = std::max(x1[i], x1[order[j + 1]]); | |||
| float yy1 = std::max(y1[i], y1[order[j + 1]]); | |||
| float xx2 = std::min(x2[i], x2[order[j + 1]]); | |||
| float yy2 = std::min(y2[i], y2[order[j + 1]]); | |||
| float w = std::max(0.0f, xx2 - xx1 + 1); | |||
| float h = std::max(0.0f, yy2 - yy1 + 1); | |||
| float inter = w * h; | |||
| ovr[j] = inter / (areas[i] + areas[order[j + 1]] - inter); | |||
| } | |||
| std::vector<int> inds; | |||
| for (int j = 0; j < len; j++) { | |||
| if (ovr[j] <= thres) { | |||
| inds.push_back(j + 1); | |||
| } | |||
| } | |||
| std::vector<int> new_order; | |||
| for (int k = 0; k < inds.size(); k++) { | |||
| new_order.push_back(order[inds[k]]); | |||
| } | |||
| order = new_order; | |||
| } | |||
| return keep; | |||
| } | |||
| void WarpAffine(LiteMat &src, LiteMat &out_img, double M[6], std::vector<size_t> dsize, UINT8_C3 borderValue) { | |||
| double IM[6]; | |||
| for (int i = 0; i < 6; i++) { | |||
| IM[i] = M[i]; | |||
| } | |||
| double D = IM[0] * IM[4] - IM[1] * IM[3]; | |||
| D = D != 0 ? 1. / D : 0; | |||
| double A11 = IM[4] * D, A22 = IM[0] * D; | |||
| IM[0] = A11; | |||
| IM[1] *= -D; | |||
| IM[3] *= -D; | |||
| IM[4] = A22; | |||
| double b1 = -IM[0] * IM[2] - IM[1] * IM[5]; | |||
| double b2 = -IM[3] * IM[2] - IM[4] * IM[5]; | |||
| IM[2] = b1; | |||
| IM[5] = b2; | |||
| out_img.Init(dsize[0], dsize[1]); | |||
| for (int y = 0; y < out_img.height_; y++) { | |||
| for (int x = 0; x < out_img.width_; x++) { | |||
| int src_x = IM[0] * x + IM[1] * y + IM[2]; | |||
| int src_y = IM[3] * x + IM[4] * y + IM[5]; | |||
| if (src_x >= 0 && src_y >= 0 && src_x < src.width_ && src_y < src.height_) { | |||
| UINT8_C3 src_pixel = static_cast<UINT8_C3 *>(src.data_ptr_)[src_y * src.width_ + src_x]; | |||
| static_cast<UINT8_C3 *>(out_img.data_ptr_)[y * src.width_ + x] = src_pixel; | |||
| } else { | |||
| static_cast<UINT8_C3 *>(out_img.data_ptr_)[y * src.width_ + x] = borderValue; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,83 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef IMAGE_PROCESS_H_ | |||
| #define IMAGE_PROCESS_H_ | |||
| #include <math.h> | |||
| #include <vector> | |||
| #include <algorithm> | |||
| #include "lite_cv/lite_mat.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| #define INT16_CAST(X) \ | |||
| static_cast<int16_t>(::std::min(::std::max(static_cast<int>(X + (X >= 0.f ? 0.5f : -0.5f)), -32768), 32767)); | |||
| #define R2GRAY 77 | |||
| #define G2GRAY 150 | |||
| #define B2GRAY 29 | |||
| #define GRAYSHIFT 8 | |||
| enum PaddBorderType { PADD_BORDER_CONSTANT = 0, PADD_BORDER_REPLICATE = 1 }; | |||
| struct BoxesConfig { | |||
| public: | |||
| std::vector<size_t> img_shape; | |||
| std::vector<int> num_default; | |||
| std::vector<int> feature_size; | |||
| float min_scale; | |||
| float max_scale; | |||
| std::vector<std::vector<float>> aspect_rations; | |||
| std::vector<int> steps; | |||
| std::vector<float> prior_scaling; | |||
| }; | |||
| /// \brief resizing image by bilinear algorithm, the data type of currently only supports is uint8, | |||
| /// the channel of currently supports is 3 and 1 | |||
| bool ResizeBilinear(const LiteMat &src, LiteMat &dst, int dst_w, int dst_h); | |||
| /// \brief Init Lite Mat from pixel, the conversion of currently supports is rbgaTorgb and rgbaTobgr | |||
| bool InitFromPixel(const unsigned char *data, LPixelType pixel_type, LDataType data_type, int w, int h, LiteMat &m); | |||
| /// \brief convert the data type, the conversion of currently supports is uint8 to float | |||
| bool ConvertTo(const LiteMat &src, LiteMat &dst, double scale = 1.0); | |||
| /// \brief crop image, the channel supports is 3 and 1 | |||
| bool Crop(const LiteMat &src, LiteMat &dst, int x, int y, int w, int h); | |||
| /// \brief normalize image, currently the supports data type is float | |||
| bool SubStractMeanNormalize(const LiteMat &src, LiteMat &dst, float *mean, float *norm); | |||
| /// \brief padd image, the channel supports is 3 and 1 | |||
| bool Padd(const LiteMat &src, LiteMat &dst, int top, int bottom, int left, int right, PaddBorderType pad_type, | |||
| uint8_t fill_b_or_gray, uint8_t fill_g, uint8_t fill_r); | |||
| void WarpAffine(const LiteMat &src, LiteMat &out_img, double M[6], std::vector<size_t> dsize, uint8_t borderValue[3]); | |||
| std::vector<std::vector<float>> GetDefaultBoxes(const BoxesConfig config); | |||
| void ConvertBoxes(std::vector<std::vector<float>> &boxes, const std::vector<std::vector<float>> &default_boxes, | |||
| const BoxesConfig config); | |||
| std::vector<int> ApplyNms(const std::vector<std::vector<float>> &all_boxes, std::vector<float> &all_scores, float thres, | |||
| int max_boxes); | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // IMAGE_PROCESS_H_ | |||
| @@ -0,0 +1,207 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "lite_cv/lite_mat.h" | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| LiteMat::LiteMat() { | |||
| data_ptr_ = 0; | |||
| elem_size_ = 0; | |||
| width_ = 0; | |||
| height_ = 0; | |||
| channel_ = 0; | |||
| c_step_ = 0; | |||
| dims_ = 0; | |||
| data_type_ = LDataType::UINT8; | |||
| ref_count_ = 0; | |||
| } | |||
| LiteMat::LiteMat(int width, LDataType data_type) { | |||
| data_ptr_ = 0; | |||
| elem_size_ = 0; | |||
| width_ = 0; | |||
| height_ = 0; | |||
| channel_ = 0; | |||
| c_step_ = 0; | |||
| dims_ = 0; | |||
| data_type_ = LDataType::UINT8; | |||
| ref_count_ = 0; | |||
| Init(width, data_type); | |||
| } | |||
| LiteMat::LiteMat(int width, int height, LDataType data_type) { | |||
| data_ptr_ = 0; | |||
| elem_size_ = 0; | |||
| width_ = 0; | |||
| height_ = 0; | |||
| channel_ = 0; | |||
| c_step_ = 0; | |||
| dims_ = 0; | |||
| data_type_ = LDataType::UINT8; | |||
| ref_count_ = 0; | |||
| Init(width, height, data_type); | |||
| } | |||
| LiteMat::LiteMat(int width, int height, int channel, LDataType data_type) { | |||
| data_ptr_ = 0; | |||
| elem_size_ = 0; | |||
| width_ = 0; | |||
| height_ = 0; | |||
| channel_ = 0; | |||
| c_step_ = 0; | |||
| dims_ = 0; | |||
| data_type_ = LDataType::UINT8; | |||
| ref_count_ = 0; | |||
| Init(width, height, channel, data_type); | |||
| } | |||
| LiteMat::~LiteMat() { Release(); } | |||
| int LiteMat::addRef(int *p, int value) { | |||
| int v = *p; | |||
| *p += value; | |||
| return v; | |||
| } | |||
| LiteMat::LiteMat(const LiteMat &m) { | |||
| data_ptr_ = m.data_ptr_; | |||
| elem_size_ = m.elem_size_; | |||
| width_ = m.width_; | |||
| height_ = m.height_; | |||
| channel_ = m.channel_; | |||
| c_step_ = m.c_step_; | |||
| dims_ = m.dims_; | |||
| data_type_ = m.data_type_; | |||
| ref_count_ = m.ref_count_; | |||
| if (ref_count_) { | |||
| addRef(ref_count_, 1); | |||
| } | |||
| } | |||
| LiteMat &LiteMat::operator=(const LiteMat &m) { | |||
| if (this == &m) { | |||
| return *this; | |||
| } | |||
| if (m.ref_count_) { | |||
| addRef(m.ref_count_, 1); | |||
| } | |||
| Release(); | |||
| data_ptr_ = m.data_ptr_; | |||
| elem_size_ = m.elem_size_; | |||
| width_ = m.width_; | |||
| height_ = m.height_; | |||
| channel_ = m.channel_; | |||
| c_step_ = m.c_step_; | |||
| dims_ = m.dims_; | |||
| data_type_ = m.data_type_; | |||
| ref_count_ = m.ref_count_; | |||
| return *this; | |||
| } | |||
| void LiteMat::Init(int width, LDataType data_type) { | |||
| Release(); | |||
| data_type_ = data_type; | |||
| InitElemSize(data_type); | |||
| width_ = width; | |||
| dims_ = 1; | |||
| height_ = 1; | |||
| channel_ = 1; | |||
| c_step_ = width; | |||
| size_ = c_step_ * elem_size_; | |||
| data_ptr_ = AlignMalloc(size_); | |||
| ref_count_ = new int[1]; | |||
| *ref_count_ = 1; | |||
| } | |||
| void LiteMat::Init(int width, int height, LDataType data_type) { | |||
| Release(); | |||
| data_type_ = data_type; | |||
| InitElemSize(data_type); | |||
| width_ = width; | |||
| height_ = height; | |||
| dims_ = 2; | |||
| channel_ = 1; | |||
| c_step_ = width_ * height_; | |||
| size_ = c_step_ * elem_size_; | |||
| data_ptr_ = AlignMalloc(size_); | |||
| ref_count_ = new int[1]; | |||
| *ref_count_ = 1; | |||
| } | |||
| void LiteMat::Init(int width, int height, int channel, LDataType data_type) { | |||
| Release(); | |||
| data_type_ = data_type; | |||
| InitElemSize(data_type); | |||
| width_ = width; | |||
| height_ = height; | |||
| dims_ = 3; | |||
| channel_ = channel; | |||
| c_step_ = ((height_ * width_ * elem_size_ + ALIGN - 1) & (-ALIGN)) / elem_size_; | |||
| size_ = c_step_ * channel_ * elem_size_; | |||
| data_ptr_ = AlignMalloc(size_); | |||
| ref_count_ = new int[1]; | |||
| *ref_count_ = 1; | |||
| } | |||
| bool LiteMat::IsEmpty() const { return data_ptr_ == 0 || data_ptr_ == nullptr || c_step_ * channel_ == 0; } | |||
| void LiteMat::Release() { | |||
| if (ref_count_ && (addRef(ref_count_, -1) == 1)) { | |||
| if (data_ptr_) { | |||
| AlignFree(data_ptr_); | |||
| } | |||
| if (ref_count_) { | |||
| delete[] ref_count_; | |||
| } | |||
| } | |||
| data_ptr_ = 0; | |||
| elem_size_ = 0; | |||
| width_ = 0; | |||
| height_ = 0; | |||
| channel_ = 0; | |||
| c_step_ = 0; | |||
| ref_count_ = 0; | |||
| } | |||
| void *LiteMat::AlignMalloc(unsigned int size) { | |||
| unsigned int length = sizeof(void *) + ALIGN - 1; | |||
| void *p_raw = reinterpret_cast<void *>(malloc(size + length)); | |||
| if (p_raw) { | |||
| void **p_algin = reinterpret_cast<void **>(((size_t)(p_raw) + length) & ~(ALIGN - 1)); | |||
| p_algin[-1] = p_raw; | |||
| return p_algin; | |||
| } | |||
| return nullptr; | |||
| } | |||
| void LiteMat::AlignFree(void *ptr) { (void)free(reinterpret_cast<void **>(ptr)[-1]); } | |||
| inline void LiteMat::InitElemSize(LDataType data_type) { | |||
| if (data_type == LDataType::UINT8) { | |||
| elem_size_ = 1; | |||
| } else if (data_type == LDataType::UINT16) { | |||
| elem_size_ = 2; | |||
| } else if (data_type == LDataType::FLOAT32) { | |||
| elem_size_ = 4; | |||
| } else { | |||
| } | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,219 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINI_MAT_H_ | |||
| #define MINI_MAT_H_ | |||
| #include <string> | |||
| #include <memory> | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| #define ALIGN 16 | |||
| template <typename T> | |||
| struct Chn1 { | |||
| T c1; | |||
| }; | |||
| template <typename T> | |||
| struct Chn2 { | |||
| T c1; | |||
| T c2; | |||
| }; | |||
| template <typename T> | |||
| struct Chn3 { | |||
| T c1; | |||
| T c2; | |||
| T c3; | |||
| }; | |||
| template <typename T> | |||
| struct Chn4 { | |||
| T c1; | |||
| T c2; | |||
| T c3; | |||
| T c4; | |||
| }; | |||
| using UINT8_C1 = Chn1<uint8_t>; | |||
| using UINT8_C2 = Chn2<uint8_t>; | |||
| using UINT8_C3 = Chn3<uint8_t>; | |||
| using UINT8_C4 = Chn4<uint8_t>; | |||
| using INT8_C1 = Chn1<int8_t>; | |||
| using INT8_C2 = Chn2<int8_t>; | |||
| using INT8_C3 = Chn3<int8_t>; | |||
| using INT8_C4 = Chn4<int8_t>; | |||
| using UINT32_C1 = Chn1<uint32_t>; | |||
| using UINT32_C2 = Chn2<uint32_t>; | |||
| using UINT32_C3 = Chn3<uint32_t>; | |||
| using UINT32_C4 = Chn4<uint32_t>; | |||
| using INT32_C1 = Chn1<int32_t>; | |||
| using INT32_C2 = Chn2<int32_t>; | |||
| using INT32_C3 = Chn3<int32_t>; | |||
| using INT32_C4 = Chn4<int32_t>; | |||
| using FLOAT32_C1 = Chn1<float>; | |||
| using FLOAT32_C2 = Chn2<float>; | |||
| using FLOAT32_C3 = Chn3<float>; | |||
| using FLOAT32_C4 = Chn4<float>; | |||
| using FLOAT64_C1 = Chn1<double>; | |||
| using FLOAT64_C2 = Chn2<double>; | |||
| using FLOAT64_C3 = Chn3<double>; | |||
| using FLOAT64_C4 = Chn4<double>; | |||
| enum LPixelType { | |||
| BGR = 0, | |||
| RGB = 1, | |||
| RGBA = 2, | |||
| RGBA2GRAY = 3, | |||
| RGBA2BGR = 4, | |||
| }; | |||
| class LDataType { | |||
| public: | |||
| enum Type : uint8_t { | |||
| UNKNOWN = 0, | |||
| BOOL, | |||
| INT8, | |||
| UINT8, | |||
| INT16, | |||
| UINT16, | |||
| INT32, | |||
| UINT32, | |||
| INT64, | |||
| UINT64, | |||
| FLOAT16, | |||
| FLOAT32, | |||
| FLOAT64, | |||
| NUM_OF_TYPES | |||
| }; | |||
| LDataType() : type_(UNKNOWN) {} | |||
| LDataType(Type d) : type_(d) {} | |||
| ~LDataType() = default; | |||
| inline Type Value() const { return type_; } | |||
| inline bool operator==(const LDataType &ps) const { | |||
| if (this->type_ == ps.type_) return true; | |||
| return false; | |||
| } | |||
| inline bool operator!=(const LDataType &ps) const { | |||
| if (this->type_ != ps.type_) return true; | |||
| return false; | |||
| } | |||
| uint8_t SizeInBytes() const { | |||
| if (type_ < LDataType::NUM_OF_TYPES) | |||
| return SIZE_IN_BYTES[type_]; | |||
| else | |||
| return 0; | |||
| } | |||
| public: | |||
| static inline const uint8_t SIZE_IN_BYTES[] = { | |||
| 0, // UNKNOWN | |||
| 1, // BOOL | |||
| 1, // INT8 | |||
| 1, // UINT8 | |||
| 2, // INT16 | |||
| 2, // UINT16 | |||
| 4, // INT32 | |||
| 4, // UINT32 | |||
| 8, // INT64 | |||
| 8, // UINT64 | |||
| 2, // FLOAT16 | |||
| 4, // FLOAT32 | |||
| 8, // FLOAT64 | |||
| }; | |||
| Type type_; | |||
| }; | |||
| class LiteMat { | |||
| // Class that represents a lite Mat of a Image. | |||
| // -# The pixel type of Lite Mat is RGBRGB...RGB. | |||
| public: | |||
| LiteMat(); | |||
| explicit LiteMat(int width, LDataType data_type = LDataType::UINT8); | |||
| LiteMat(int width, int height, LDataType data_type = LDataType::UINT8); | |||
| LiteMat(int width, int height, int channel, LDataType data_type = LDataType::UINT8); | |||
| ~LiteMat(); | |||
| LiteMat(const LiteMat &m); | |||
| void Init(int width, LDataType data_type = LDataType::UINT8); | |||
| void Init(int width, int height, LDataType data_type = LDataType::UINT8); | |||
| void Init(int width, int height, int channel, LDataType data_type = LDataType::UINT8); | |||
| bool IsEmpty() const; | |||
| void Release(); | |||
| LiteMat &operator=(const LiteMat &m); | |||
| template <typename T> | |||
| operator T *() { | |||
| return reinterpret_cast<T *>(data_ptr_); | |||
| } | |||
| template <typename T> | |||
| operator const T *() const { | |||
| return reinterpret_cast<const T *>(data_ptr_); | |||
| } | |||
| private: | |||
| /// \brief apply for memory alignment | |||
| void *AlignMalloc(unsigned int size); | |||
| /// \brief free memory | |||
| void AlignFree(void *ptr); | |||
| void InitElemSize(LDataType data_type); | |||
| /// \brief add reference | |||
| int addRef(int *p, int value); | |||
| public: | |||
| void *data_ptr_ = nullptr; | |||
| int elem_size_; | |||
| int width_; | |||
| int height_; | |||
| int channel_; | |||
| int c_step_; | |||
| int dims_; | |||
| size_t size_; | |||
| LDataType data_type_; | |||
| int *ref_count_; | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| #endif // MINI_MAT_H_ | |||
| @@ -76,7 +76,7 @@ option(BUILD_CONVERTER "if build converter" on) | |||
| option(ENABLE_FP16 "if build fp16 ops" off) | |||
| option(SUPPORT_GPU "if support gpu" off) | |||
| option(OFFLINE_COMPILE "if offline compile OpenCL kernel" off) | |||
| set(BUILD_MINDDATA "off" CACHE STRING "off, lite, or full") | |||
| set(BUILD_MINDDATA "off" CACHE STRING "off, lite, lite_cv or full") | |||
| option(BUILD_MINDDATA_EXAMPLE "" on) | |||
| set(CMAKE_VERBOSE_MAKEFILE on) | |||
| @@ -215,6 +215,13 @@ if (BUILD_MINDDATA STREQUAL "lite" OR BUILD_MINDDATA STREQUAL "full") | |||
| add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/minddata) | |||
| endif () | |||
| if (BUILD_MINDDATA STREQUAL "lite_cv") | |||
| # TODO: add sentencepiece dependency | |||
| #include(${TOP_DIR}/cmake/external_libs/sentencepiece.cmake) | |||
| add_compile_definitions(ENABLE_ANDROID) | |||
| add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/minddata) | |||
| endif () | |||
| if (BUILD_DEVICE) | |||
| add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/src) | |||
| add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/nnacl) | |||
| @@ -70,6 +70,9 @@ AUX_SOURCE_DIRECTORY(${MINDDATA_DIR}/text/kernels MINDDATA_TEXT_KERNELS_SRC_FILE | |||
| AUX_SOURCE_DIRECTORY(${MINDDATA_DIR}/util MINDDATA_UTIL_SRC_FILES) | |||
| AUX_SOURCE_DIRECTORY(${MINDDATA_DIR}/kernels/image/lite_cv MINDDATA_KERNELS_IMAGE_LITE_CV_FILES) | |||
| if (BUILD_MINDDATA STREQUAL "full") | |||
| list(REMOVE_ITEM MINDDATA_API_SRC_FILES | |||
| "${MINDDATA_DIR}/api/text.cc" | |||
| @@ -175,7 +178,6 @@ if (BUILD_MINDDATA STREQUAL "full") | |||
| COMMAND cp -rf ${CMAKE_CURRENT_SOURCE_DIR}/example/testCifar10Data ${CMAKE_BINARY_DIR}/minddata | |||
| ) | |||
| endif() | |||
| elseif (BUILD_MINDDATA STREQUAL "lite") | |||
| list(REMOVE_ITEM MINDDATA_CORE_SRC_FILES "${MINDDATA_DIR}/core/client.cc") | |||
| list(REMOVE_ITEM MINDDATA_KERNELS_SRC_FILES "${MINDDATA_DIR}/kernels/py_func_op.cc") | |||
| @@ -207,6 +209,21 @@ elseif (BUILD_MINDDATA STREQUAL "lite") | |||
| mindspore::json | |||
| ) | |||
| # ref: https://github.com/android/ndk/issues/1202 | |||
| if (PLATFORM_ARM32) | |||
| file(GLOB_RECURSE LIBCLANG_RT_LIB $ENV{ANDROID_NDK}/libclang_rt.builtins-arm-android.a) | |||
| if (LIBCLANG_RT_LIB STREQUAL "") | |||
| MESSAGE(FATAL_ERROR "Cannot find libclang_rt.builtins-arm-androi2d.a in $ENV{ANDROID_NDK}") | |||
| endif() | |||
| target_link_libraries(minddata-lite ${LIBCLANG_RT_LIB}) | |||
| endif() | |||
| elseif (BUILD_MINDDATA STREQUAL "lite_cv") | |||
| include_directories(${MINDDATA_DIR}/kernels/image) | |||
| message(STATUS ${MINDDATA_DIR}/kernels/image) | |||
| add_library(minddata-lite SHARED | |||
| ${MINDDATA_KERNELS_IMAGE_LITE_CV_FILES} | |||
| ) | |||
| # ref: https://github.com/android/ndk/issues/1202 | |||
| if (PLATFORM_ARM32) | |||
| file(GLOB_RECURSE LIBCLANG_RT_LIB $ENV{ANDROID_NDK}/libclang_rt.builtins-arm-android.a) | |||
| @@ -33,12 +33,14 @@ if(ENABLE_MINDDATA) | |||
| endif() | |||
| # fetch ut test files | |||
| if(ENABLE_MINDDATA) | |||
| include_directories(${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/kernels/image) | |||
| file(GLOB_RECURSE UT_SRCS RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} | |||
| ./stub/*.cc | |||
| ./common/*.cc | |||
| ./abstract/*.cc | |||
| ./base/*.cc | |||
| ./dataset/*.cc | |||
| ${CMAKE_SOURCE_DIR}/mindspore/ccsrc/minddata/dataset/kernels/image/lite_cv/*.cc | |||
| ./debug/*.cc | |||
| ./device/*.cc | |||
| ./ir/*.cc | |||
| @@ -55,6 +57,7 @@ if(ENABLE_MINDDATA) | |||
| ./utils/*.cc | |||
| ./vm/*.cc | |||
| ) | |||
| if(NOT ENABLE_PYTHON) | |||
| set(PYTHON_RELATED_SRCS | |||
| dataset/filter_op_test.cc | |||
| @@ -159,6 +162,11 @@ endif() | |||
| if (CMAKE_SYSTEM_NAME MATCHES "Linux") | |||
| target_link_libraries(ut_tests PRIVATE mindspore::gtest mindspore::event mindspore::event_pthreads mindspore_gvar ${PYTHON_LIBRARIES} pthread util dl) | |||
| if (ENABLE_MINDDATA) | |||
| # AUX_SOURCE_DIRECTORY(LITE_CV_FILES) | |||
| # message(STATUS "xxxxxxxxxxxxxxxxx"${LITE_CV_FILES} ) | |||
| # add_library(_live_cv OBJECT ${LITE_CV_FILES}) | |||
| target_link_libraries(ut_tests PRIVATE _c_dataengine _c_mindrecord) | |||
| endif() | |||
| else() | |||
| @@ -123,6 +123,7 @@ SET(DE_UT_SRCS | |||
| swap_red_blue_test.cc | |||
| distributed_sampler_test.cc | |||
| data_helper_test.cc | |||
| image_process_test.cc | |||
| ) | |||
| if (ENABLE_PYTHON) | |||
| @@ -0,0 +1,252 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/common.h" | |||
| #include "lite_cv/lite_mat.h" | |||
| #include "lite_cv/image_process.h" | |||
| #include <opencv2/opencv.hpp> | |||
| #include <opencv2/imgproc/types_c.h> | |||
| #include "utils/log_adapter.h" | |||
| using namespace mindspore::dataset; | |||
| class MindDataImageProcess : public UT::Common { | |||
| public: | |||
| MindDataImageProcess() {} | |||
| void SetUp() {} | |||
| }; | |||
| void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) { | |||
| int cv_h = cv_mat.rows; | |||
| int cv_w = cv_mat.cols; | |||
| int cv_c = cv_mat.channels(); | |||
| int lite_h = lite_mat.height_; | |||
| int lite_w = lite_mat.width_; | |||
| int lite_c = lite_mat.channel_; | |||
| ASSERT_TRUE(cv_h == lite_h); | |||
| ASSERT_TRUE(cv_w == lite_w); | |||
| ASSERT_TRUE(cv_c == lite_c); | |||
| } | |||
| LiteMat Lite3CImageProcess(LiteMat &lite_mat_bgr) { | |||
| bool ret; | |||
| LiteMat lite_mat_resize; | |||
| ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256); | |||
| if (!ret) { | |||
| MS_LOG(ERROR) << "ResizeBilinear error"; | |||
| } | |||
| LiteMat lite_mat_convert_float; | |||
| ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0 ); | |||
| if (!ret) { | |||
| MS_LOG(ERROR) << "ConvertTo error"; | |||
| } | |||
| LiteMat lite_mat_crop; | |||
| ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224); | |||
| if (!ret) { | |||
| MS_LOG(ERROR) << "Crop error"; | |||
| } | |||
| float means[3] = {0.485, 0.456, 0.406}; | |||
| float vars[3] = {1.0 / 0.229, 1.0 / 0.224, 1.0 / 0.225}; | |||
| LiteMat lite_norm_mat_cut; | |||
| SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, vars); | |||
| return lite_norm_mat_cut; | |||
| } | |||
| cv::Mat cv3CImageProcess(cv::Mat &image) { | |||
| cv::Mat resize_256_image; | |||
| cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR); | |||
| cv::Mat float_256_image; | |||
| resize_256_image.convertTo(float_256_image, CV_32FC3); | |||
| cv::Mat roi_224_image; | |||
| cv::Rect roi; | |||
| roi.x = 16; | |||
| roi.y = 16; | |||
| roi.width = 224; | |||
| roi.height = 224; | |||
| float_256_image(roi).copyTo(roi_224_image); | |||
| float meanR = 0.485; | |||
| float meanG = 0.456; | |||
| float meanB = 0.406; | |||
| float varR = 0.229; | |||
| float varG = 0.224; | |||
| float varB = 0.225; | |||
| cv::Scalar mean = cv::Scalar(meanR, meanG, meanB); | |||
| cv::Scalar var = cv::Scalar(varR, varG, varB); | |||
| cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean); | |||
| cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var); | |||
| cv::Mat imgR1 = roi_224_image - imgMean; | |||
| cv::Mat imgR2 = imgR1 / imgVar; | |||
| return imgR2; | |||
| } | |||
| TEST_F(MindDataImageProcess, test3C) { | |||
| std::string filename = "data/dataset/apple.jpg"; | |||
| cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); | |||
| cv::Mat cv_image = cv3CImageProcess(image); | |||
| // cv::imwrite("/home/xlei/test_3cv.jpg", cv_image); | |||
| // convert to RGBA for Android bitmap(rgba) | |||
| cv::Mat rgba_mat; | |||
| cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); | |||
| bool ret = false; | |||
| LiteMat lite_mat_bgr; | |||
| ret = | |||
| InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); | |||
| if (!ret) { | |||
| MS_LOG(ERROR) << "Init From RGBA error"; | |||
| } | |||
| LiteMat lite_norm_mat_cut = Lite3CImageProcess(lite_mat_bgr); | |||
| cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_); | |||
| // cv::imwrite("/home/xlei/test_3clite.jpg", dst_image); | |||
| CompareMat(cv_image, lite_norm_mat_cut); | |||
| } | |||
| LiteMat Lite1CImageProcess(LiteMat &lite_mat_bgr) { | |||
| LiteMat lite_mat_resize; | |||
| ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256); | |||
| LiteMat lite_mat_convert_float; | |||
| ConvertTo(lite_mat_resize, lite_mat_convert_float); | |||
| LiteMat lite_mat_cut; | |||
| Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224); | |||
| float means[1] = {0.485}; | |||
| float vars[1] = {1.0 / 0.229}; | |||
| LiteMat lite_norm_mat_cut; | |||
| SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, vars); | |||
| return lite_norm_mat_cut; | |||
| } | |||
| cv::Mat cv1CImageProcess(cv::Mat &image) { | |||
| cv::Mat gray_image; | |||
| cv::cvtColor(image, gray_image, CV_BGR2GRAY); | |||
| cv::Mat resize_256_image; | |||
| cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR); | |||
| cv::Mat float_256_image; | |||
| resize_256_image.convertTo(float_256_image, CV_32FC3); | |||
| cv::Mat roi_224_image; | |||
| cv::Rect roi; | |||
| roi.x = 16; | |||
| roi.y = 16; | |||
| roi.width = 224; | |||
| roi.height = 224; | |||
| float_256_image(roi).copyTo(roi_224_image); | |||
| float meanR = 0.485; | |||
| float varR = 0.229; | |||
| cv::Scalar mean = cv::Scalar(meanR); | |||
| cv::Scalar var = cv::Scalar(varR); | |||
| cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean); | |||
| cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var); | |||
| cv::Mat imgR1 = roi_224_image - imgMean; | |||
| cv::Mat imgR2 = imgR1 / imgVar; | |||
| return imgR2; | |||
| } | |||
| TEST_F(MindDataImageProcess, test1C) { | |||
| std::string filename = "data/dataset/apple.jpg"; | |||
| cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); | |||
| cv::Mat cv_image = cv1CImageProcess(image); | |||
| // cv::imwrite("/home/xlei/test_c1v.jpg", cv_image); | |||
| // convert to RGBA for Android bitmap(rgba) | |||
| cv::Mat rgba_mat; | |||
| cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); | |||
| LiteMat lite_mat_bgr; | |||
| InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); | |||
| LiteMat lite_norm_mat_cut = Lite1CImageProcess(lite_mat_bgr); | |||
| cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_); | |||
| // cv::imwrite("/home/xlei/test_c1lite.jpg", dst_image); | |||
| CompareMat(cv_image, lite_norm_mat_cut); | |||
| } | |||
| TEST_F(MindDataImageProcess, TestPadd) { | |||
| std::string filename = "data/dataset/apple.jpg"; | |||
| cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); | |||
| cv::Mat resize_256_image; | |||
| cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR); | |||
| int left = 10; | |||
| int right = 10; | |||
| int top = 10; | |||
| int bottom = 10; | |||
| cv::Mat b_image; | |||
| cv::Scalar color = cv::Scalar(255, 255, 255); | |||
| cv::copyMakeBorder(resize_256_image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color); | |||
| // cv::imwrite("/home/xlei/test_ccc.jpg", b_image); | |||
| cv::Mat rgba_mat; | |||
| cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); | |||
| LiteMat lite_mat_bgr; | |||
| InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); | |||
| LiteMat lite_mat_resize; | |||
| ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256); | |||
| LiteMat makeborder; | |||
| Padd(lite_mat_resize, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255); | |||
| cv::Mat dst_image(256 + top + bottom, 256 + left + right, CV_8UC3, makeborder.data_ptr_); | |||
| // cv::imwrite("/home/xlei/test_liteccc.jpg", dst_image); | |||
| } | |||
| TEST_F(MindDataImageProcess, TestGetDefaultBoxes) { | |||
| BoxesConfig config; | |||
| config.img_shape = {300, 300}; | |||
| config.num_default = {3, 6, 6, 6, 6, 6}; | |||
| config.feature_size = {19, 10, 5, 3, 2, 1}; | |||
| config.min_scale = 0.2; | |||
| config.max_scale = 0.95; | |||
| config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}}; | |||
| config.steps = {16, 32, 64, 100, 150, 300}; | |||
| config.prior_scaling = {0.1, 0.2}; | |||
| std::vector<std::vector<float>> default_boxes = GetDefaultBoxes(config); | |||
| ASSERT_TRUE(default_boxes.size() == 1917); | |||
| } | |||
| TEST_F(MindDataImageProcess, TestApplyNms) { | |||
| std::vector<std::vector<float>> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}}; | |||
| std::vector<float> all_scores = {0.6, 0.5, 0.4, 0.9}; | |||
| std::vector<int> keep = ApplyNms(all_boxes, all_scores, 0.5, 10); | |||
| ASSERT_TRUE(keep[0] == 3); | |||
| ASSERT_TRUE(keep[1] == 0); | |||
| ASSERT_TRUE(keep[2] == 1); | |||
| } | |||