| @@ -58,7 +58,11 @@ int AnfImporterFromMetaGraphT::ConverterConstTensor() { | |||
| MS_LOG(ERROR) << "new char[] failed"; | |||
| return RET_MEMORY_FAILED; | |||
| } | |||
| std::memcpy(tensor_data, tensor->data.data(), size); | |||
| auto ret = memcpy_s(tensor_data, size, tensor->data.data(), size); | |||
| if (EOK != ret) { | |||
| MS_LOG(ERROR) << "memcpy_s error"; | |||
| return RET_MEMORY_FAILED; | |||
| } | |||
| param_value->set_tensor_addr(tensor_data); | |||
| param_value->set_tensor_size(size); | |||
| parameter->set_default_param(param_value); | |||
| @@ -154,8 +158,16 @@ int AnfImporterFromMetaGraphT::ConvertAbstract(const std::unique_ptr<schema::CNo | |||
| } | |||
| auto tuple_get_item_prim = NewValueNode(tuple_get_item_prim_ptr); | |||
| auto get_item_value = NewValueNode(MakeValue<int>(i)); | |||
| if (tuple_get_item_prim == nullptr || get_item_value == nullptr) { | |||
| MS_LOG(ERROR) << "NewValueNode is nullptr"; | |||
| return RET_NULL_PTR; | |||
| } | |||
| std::vector<AnfNodePtr> inputs{tuple_get_item_prim, dst_cnode, get_item_value}; | |||
| CNodePtr get_item_cnode = func_graph_->NewCNode(inputs); | |||
| if (get_item_cnode == nullptr) { | |||
| MS_LOG(ERROR) << "NewCNode is nullptr"; | |||
| return RET_NULL_PTR; | |||
| } | |||
| get_item_cnode->set_fullname_with_scope(src_cnode->name + "_getitem_" + std::to_string(i)); | |||
| AddNode(out_tensor_id, get_item_cnode); | |||
| } | |||
| @@ -216,6 +228,10 @@ int AnfImporterFromMetaGraphT::AddReturnCNode() { | |||
| make_tuple_inputs.emplace_back(cNode); | |||
| } | |||
| auto make_tuple_cnode = func_graph_->NewCNode(make_tuple_inputs); | |||
| if (make_tuple_cnode == nullptr) { | |||
| MS_LOG(ERROR) << "NewCNode is nullptr"; | |||
| return RET_NULL_PTR; | |||
| } | |||
| make_tuple_cnode->set_fullname_with_scope("return tuple"); | |||
| std::vector<AnfNodePtr> op_inputs; | |||
| @@ -246,6 +262,10 @@ int AnfImporterFromMetaGraphT::AddReturnCNode() { | |||
| } | |||
| op_inputs.emplace_back(cnode); | |||
| auto return_cnode = func_graph_->NewCNode(op_inputs); | |||
| if (return_cnode == nullptr) { | |||
| MS_LOG(ERROR) << "NewCNode is nullptr"; | |||
| return RET_NULL_PTR; | |||
| } | |||
| return_cnode->set_fullname_with_scope("return"); | |||
| func_graph_->set_return(return_cnode); | |||
| } | |||
| @@ -27,7 +27,7 @@ | |||
| namespace mindspore::lite { | |||
| class AnfImporterFromMetaGraphT : public AnfImporter { | |||
| public: | |||
| explicit AnfImporterFromMetaGraphT(schema::MetaGraphT *meta_graph, FuncGraphPtr func_graph) | |||
| AnfImporterFromMetaGraphT(schema::MetaGraphT *meta_graph, FuncGraphPtr func_graph) | |||
| : meta_graph_(meta_graph), func_graph_(std::move(func_graph)) {} | |||
| ~AnfImporterFromMetaGraphT() override = default; | |||
| @@ -43,7 +43,6 @@ using int64 = int64_t; | |||
| using uint64 = uint64_t; | |||
| namespace mindspore::lite { | |||
| static constexpr char kConstantValueNode[] = "Constant"; | |||
| enum ParseForm : int { | |||
| @@ -212,7 +211,7 @@ int AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &node | |||
| node->set_name(value_proto.name()); | |||
| const auto &type_proto = value_proto.type(); | |||
| if (!type_proto.has_tensor_type()) { | |||
| MS_LOG(ERROR) << "onnx TypeProto has no tesor_type! "; | |||
| MS_LOG(ERROR) << "onnx TypeProto has no tensor_type! "; | |||
| return RET_PARAM_INVALID; | |||
| } | |||
| const onnx::TypeProto_Tensor &tensor_typeproto = type_proto.tensor_type(); | |||
| @@ -248,6 +247,7 @@ int AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &node | |||
| std::string initial_data = initialize_proto.raw_data(); | |||
| auto *tensor_data_buf = reinterpret_cast<uint8_t *>(tensor_info->MutableData()); | |||
| if (tensor_data_buf == nullptr) { | |||
| delete tensor_info; | |||
| return RET_MEMORY_FAILED; | |||
| } | |||
| tensor_info->set_data(nullptr); | |||
| @@ -261,6 +261,7 @@ int AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &node | |||
| ParamValueLitePtr param_value = std::make_shared<ParamValueLite>(); | |||
| if (param_value == nullptr) { | |||
| delete tensor_info; | |||
| return RET_NULL_PTR; | |||
| } | |||
| param_value->set_tensor_addr(tensor_data_buf); | |||
| @@ -367,22 +368,38 @@ bool AnfImporterFromProtobuf::ObtainCNodeAttrInTensorForm(const PrimitivePtr &pr | |||
| std::make_shared<tensor::Tensor>(kDefaultValueSwitchMap[attr_tensor_type], shape_vector); | |||
| auto *tensor_data_buf = reinterpret_cast<uint8_t *>(tensor_info->data_c()); | |||
| ret = memcpy_s(tensor_data_buf, tensor_info->Size(), tensor_buf.data(), tensor_buf.size()); | |||
| if (EOK != ret) { | |||
| MS_LOG(ERROR) << "memcpy_s error"; | |||
| return false; | |||
| } | |||
| prim->set_attr(attr_name, MakeValue(tensor_info)); | |||
| } else { | |||
| if (attr_tensor_type == onnx::TensorProto_DataType_DOUBLE) { | |||
| size_t data_size = sizeof(double); | |||
| double attr_value = 0.0; | |||
| ret = memcpy_s(&attr_value, data_size, tensor_buf.data(), tensor_buf.size()); | |||
| if (EOK != ret) { | |||
| MS_LOG(ERROR) << "memcpy_s error"; | |||
| return false; | |||
| } | |||
| prim->set_attr(attr_name, MakeValue<double>(attr_value)); | |||
| } else if (attr_tensor_type == onnx::TensorProto_DataType_INT64) { | |||
| size_t data_size = sizeof(int64_t); | |||
| int64_t attr_value = 0; | |||
| ret = memcpy_s(&attr_value, data_size, tensor_buf.data(), tensor_buf.size()); | |||
| if (EOK != ret) { | |||
| MS_LOG(ERROR) << "memcpy_s error"; | |||
| return false; | |||
| } | |||
| prim->set_attr(attr_name, MakeValue<int64_t>(attr_value)); | |||
| } else if (attr_tensor_type == onnx::TensorProto_DataType_BOOL) { | |||
| size_t data_size = sizeof(bool); | |||
| bool attr_value = false; | |||
| ret = memcpy_s(&attr_value, data_size, tensor_buf.data(), tensor_buf.size()); | |||
| if (EOK != ret) { | |||
| MS_LOG(ERROR) << "memcpy_s error"; | |||
| return false; | |||
| } | |||
| prim->set_attr(attr_name, MakeValue<bool>(attr_value)); | |||
| } | |||
| } | |||
| @@ -399,7 +416,7 @@ bool AnfImporterFromProtobuf::GetAttrValueForCNode(const PrimitivePtr &prim, con | |||
| return false; | |||
| } | |||
| const std::string &ref_attr_name = attr_proto.ref_attr_name(); | |||
| string type; | |||
| string type = ""; | |||
| std::size_t pos(0); | |||
| if ((pos = ref_attr_name.find("scalar:")) != std::string::npos) { | |||
| type = ref_attr_name.substr(pos, string("scalar:").length() - 1); | |||
| @@ -503,7 +520,7 @@ bool AnfImporterFromProtobuf::GetAttrValueForValueNode(const std::string &value_ | |||
| return false; | |||
| } | |||
| const std::string &ref_attr_name = attr_proto.ref_attr_name(); | |||
| string type; | |||
| string type = ""; | |||
| std::size_t pos(0); | |||
| if ((pos = ref_attr_name.find("scalar:")) != std::string::npos) { | |||
| type = ref_attr_name.substr(pos, string("scalar:").length() - 1); | |||
| @@ -682,9 +699,17 @@ bool AnfImporterFromProtobuf::BuildReturnForFuncGraph(const FuncGraphPtr &output | |||
| const onnx::ValueInfoProto &output_node = importProto.output(out_size); | |||
| const std::string &out_tuple = output_node.name(); | |||
| inputs.push_back(anfnode_build_map_[out_tuple]); | |||
| if (anfnode_build_map_[out_tuple] == nullptr) { | |||
| MS_LOG(ERROR) << "AnfNode is nullptr"; | |||
| return false; | |||
| } | |||
| elem.push_back(anfnode_build_map_[out_tuple]->abstract()); | |||
| } | |||
| auto maketuple_ptr = outputFuncGraph->NewCNode(inputs); | |||
| if (maketuple_ptr == nullptr) { | |||
| MS_LOG(ERROR) << "maketuple_ptr is nullptr"; | |||
| return false; | |||
| } | |||
| maketuple_ptr->set_abstract(std::make_shared<abstract::AbstractTuple>(elem)); | |||
| inputs.clear(); | |||
| auto primReturn = std::make_unique<schema::PrimitiveT>(); | |||
| @@ -857,6 +882,10 @@ int AnfImporterFromProtobuf::Import(const schema::QuantType &quantType) { | |||
| MS_LOG(ERROR) << "Parse configuration info for pb file failed!"; | |||
| return status; | |||
| } | |||
| if (onnx_model_ == nullptr) { | |||
| MS_LOG(ERROR) << "onnx_model_ is nullptr"; | |||
| return RET_NULL_PTR; | |||
| } | |||
| const onnx::GraphProto &graphBuild = onnx_model_->graph(); | |||
| status = BuildFuncGraph(dstGraph, graphBuild, quantType); | |||
| if (status != RET_OK) { | |||
| @@ -871,6 +900,11 @@ int AnfImporterFromProtobuf::Import(const schema::QuantType &quantType) { | |||
| onnx::ModelProto *AnfImporterFromProtobuf::ReadOnnxFromBinary(const std::string &model_path) { | |||
| auto onnx_model = new (std::nothrow) onnx::ModelProto; | |||
| if (onnx_model == nullptr) { | |||
| MS_LOG(ERROR) << "New onnx ModelProto failed!"; | |||
| ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_NULL_PTR); | |||
| return nullptr; | |||
| } | |||
| if (RET_OK != ValidateFileStr(model_path, ".mindir")) { | |||
| MS_LOG(ERROR) << "INPUT ILLEGAL: modelFile must be *.mindir"; | |||
| ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_INPUT_PARAM_INVALID); | |||
| @@ -31,7 +31,7 @@ | |||
| namespace mindspore::lite { | |||
| class AnfImporterFromProtobuf : public AnfImporter { | |||
| public: | |||
| explicit AnfImporterFromProtobuf(onnx::ModelProto *onnx_model, FuncGraphPtr func_graph) | |||
| AnfImporterFromProtobuf(onnx::ModelProto *onnx_model, FuncGraphPtr func_graph) | |||
| : onnx_model_(onnx_model), func_graph_(std::move(func_graph)) {} | |||
| ~AnfImporterFromProtobuf() override = default; | |||
| @@ -203,7 +203,7 @@ const AnfNodePtr ConstFoldPass::Process(const FuncGraphPtr &func_graph, const An | |||
| auto output_nums = GetOutputTensorNum(input_cnode); | |||
| std::vector<Tensor *> output_tensors; | |||
| for (size_t j = 0; j < output_nums; j++) { | |||
| output_tensors.push_back(new Tensor()); | |||
| output_tensors.push_back(new (std::nothrow) Tensor()); | |||
| } | |||
| auto lite_primitive = GetValueNode<std::shared_ptr<PrimitiveC>>(input_cnode->input(0)); | |||
| if (lite_primitive == nullptr) { | |||
| @@ -32,7 +32,6 @@ const BaseRef ConvActivationFusion::DefinePattern() const { | |||
| auto prim = new schema::PrimitiveT(); | |||
| prim->value.type = primitive_type; | |||
| auto prim_value = std::make_shared<lite::PrimitiveC>(prim); | |||
| return VectorRef({prim_value, conv_var}); | |||
| } | |||
| @@ -25,9 +25,9 @@ namespace mindspore { | |||
| namespace opt { | |||
| class ConvActivationFusion : public PatternProcessPass { | |||
| public: | |||
| explicit ConvActivationFusion(bool multigraph = true, const std::string &name = "conv_activation_fusion", | |||
| schema::PrimitiveType primitive = schema::PrimitiveType_LeakyReLU, | |||
| schema::ActivationType activation = schema::ActivationType_LEAKY_RELU) | |||
| ConvActivationFusion(bool multigraph = true, const std::string &name = "conv_activation_fusion", | |||
| schema::PrimitiveType primitive = schema::PrimitiveType_LeakyReLU, | |||
| schema::ActivationType activation = schema::ActivationType_LEAKY_RELU) | |||
| : PatternProcessPass(name, multigraph), primitive_type(primitive), activation_type(activation) {} | |||
| ~ConvActivationFusion() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| @@ -57,6 +57,11 @@ void CalTransale(const AnfNodePtr &bn_scale_node, const AnfNodePtr &bn_var_node, | |||
| for (int32_t i = 0; i < kernel_num; i++) { | |||
| float tmp = trans_scale[i] + eps; | |||
| tmp = pow(tmp, POW_NUM); | |||
| if (tmp <= 0.0f) { | |||
| MS_LOG(ERROR) << "divisor cannot be 0"; | |||
| lite::ReturnCode::GetSingleReturnCode()->UpdateReturnCode(lite::RET_ERROR); | |||
| return; | |||
| } | |||
| trans_scale[i] = 1 / tmp; | |||
| } | |||
| if (bn_scale_node != nullptr) { | |||
| @@ -42,7 +42,6 @@ const BaseRef ConvScaleFusion::DefinePattern() const { | |||
| auto bn_var = std::make_shared<CondVar>(IsScaleNode); | |||
| auto weight_var = std::make_shared<CondVar>(IsParamNode); | |||
| auto bias_var = std::make_shared<SeqVar>(); | |||
| return VectorRef({bn_var, conv_var, weight_var, bias_var}); | |||
| } | |||
| const void ConvScaleFusion::InitTransParam(const CNodePtr &scale_node, int kernel_num, float *trans_scale, | |||
| @@ -86,14 +86,12 @@ const AnfNodePtr ConvTransformFusion::Process(const FuncGraphPtr &func_graph, co | |||
| auto trans_scale = new (std::nothrow) float[kernel_nums]; | |||
| if (trans_scale == nullptr) { | |||
| MS_LOG(ERROR) << "tensor_data is nullptr"; | |||
| delete[] trans_scale; | |||
| return nullptr; | |||
| } | |||
| auto trans_bias = new (std::nothrow) float[kernel_nums]; | |||
| if (trans_bias == nullptr) { | |||
| MS_LOG(ERROR) << "tensor_data is nullptr"; | |||
| delete[] trans_scale; | |||
| delete[] trans_bias; | |||
| return nullptr; | |||
| } | |||
| GenTransParam(transform_node, kernel_nums, trans_scale, trans_bias); | |||
| @@ -179,11 +177,10 @@ const void ConvTransformFusion::GenNewConvTensor(const FuncGraphPtr &func_graph, | |||
| if (kernel_num <= 0) { | |||
| MS_LOG(ERROR) << "kernel num less than 0"; | |||
| lite::ReturnCode::GetSingleReturnCode()->UpdateReturnCode(lite::RET_INVALID_OP_ATTR); | |||
| return; | |||
| } | |||
| auto kernel_size = weight_tensor->tensor_shape_size() / kernel_num; | |||
| CalNewWeightTensor(weight_data, kernel_num, kernel_size, trans_scale); | |||
| float *bias_data = nullptr; | |||
| // conv has bias,bias_flag true | |||
| bool bias_flag = false; | |||
| @@ -196,7 +193,6 @@ const void ConvTransformFusion::GenNewConvTensor(const FuncGraphPtr &func_graph, | |||
| bias_data = new (std::nothrow) float[kernel_num]; | |||
| if (bias_data == nullptr) { | |||
| MS_LOG(ERROR) << "tensor_data is nullptr"; | |||
| delete[] bias_data; | |||
| return; | |||
| } | |||
| } | |||
| @@ -211,6 +207,10 @@ const void ConvTransformFusion::CalNewWeightTensor(float *weight_data, int kerne | |||
| const float *trans_scale) const { | |||
| MS_ASSERT(weight_data != nullptr); | |||
| auto tmp_weight_data = new (std::nothrow) float[kernel_num * kernel_size]; | |||
| if (tmp_weight_data == nullptr) { | |||
| lite::ReturnCode::GetSingleReturnCode()->UpdateReturnCode(lite::RET_MEMORY_FAILED); | |||
| return; | |||
| } | |||
| MS_ASSERT(new_weight_data != nullptr); | |||
| auto data_size = kernel_num * kernel_size * sizeof(float); | |||
| if (0 != memset_s(tmp_weight_data, data_size, 0, data_size)) { | |||
| @@ -38,7 +38,6 @@ const BaseRef ConvTupleActivationFusion::DefinePattern() const { | |||
| auto act_prim = new schema::PrimitiveT(); | |||
| act_prim->value.type = primitive_type; | |||
| auto act_value = std::make_shared<lite::PrimitiveC>(act_prim); | |||
| return VectorRef({act_value, tuple_get_item}); | |||
| } | |||
| @@ -25,9 +25,9 @@ namespace mindspore { | |||
| namespace opt { | |||
| class ConvTupleActivationFusion : public PatternProcessPass { | |||
| public: | |||
| explicit ConvTupleActivationFusion(bool multigraph = true, const std::string &name = "conv_tuple_activation_fusion", | |||
| schema::PrimitiveType primitive = schema::PrimitiveType_LeakyReLU, | |||
| schema::ActivationType activation = schema::ActivationType_LEAKY_RELU) | |||
| ConvTupleActivationFusion(bool multigraph = true, const std::string &name = "conv_tuple_activation_fusion", | |||
| schema::PrimitiveType primitive = schema::PrimitiveType_LeakyReLU, | |||
| schema::ActivationType activation = schema::ActivationType_LEAKY_RELU) | |||
| : PatternProcessPass(name, multigraph), primitive_type(primitive), activation_type(activation) {} | |||
| ~ConvTupleActivationFusion() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| @@ -48,7 +48,6 @@ class LayerNormFusion : public PatternProcessPass { | |||
| VarPtr beta_; | |||
| VarPtr epsilon_; | |||
| }; | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -28,14 +28,13 @@ constexpr size_t kActivationInputsLength = 2; | |||
| } | |||
| const BaseRef PoolingActivationFusion::DefinePattern() const { | |||
| auto pooling_var = std::make_shared<CondVar>(IsPoolingNode)(); | |||
| auto prim = new schema::PrimitiveT(); | |||
| auto prim = new (std::nothrow) schema::PrimitiveT(); | |||
| if (prim == nullptr) { | |||
| MS_LOG(ERROR) << "new primitiveT failed"; | |||
| return nullptr; | |||
| } | |||
| prim->value.type = primitive_type; | |||
| auto prim_value = std::make_shared<lite::PrimitiveC>(prim); | |||
| return VectorRef({prim_value, pooling_var}); | |||
| } | |||
| @@ -43,7 +42,6 @@ const AnfNodePtr PoolingActivationFusion::Process(const FuncGraphPtr &func_graph | |||
| const EquivPtr &) const { | |||
| MS_LOG(DEBUG) << "pooling activation pass process:" << schema::EnumNamesPrimitiveType()[primitive_type]; | |||
| CheckIfFuncGraphIsNull(func_graph); | |||
| CheckIfAnfNodeIsNull(node); | |||
| auto act_node = node->cast<CNodePtr>(); | |||
| CheckIfCNodeIsNull(act_node); | |||
| @@ -25,9 +25,9 @@ namespace mindspore { | |||
| namespace opt { | |||
| class PoolingActivationFusion : public PatternProcessPass { | |||
| public: | |||
| explicit PoolingAActivationFusion(bool multigraph = true, const std::string &name = "pooling_activation_fusion", | |||
| schema::PrimitiveType primitive = schema::PrimitiveType_LeakyReLU, | |||
| schema::ActivationType activation = schema::ActivationType_LEAKY_RELU) | |||
| PoolingAActivationFusion(bool multigraph = true, const std::string &name = "pooling_activation_fusion", | |||
| schema::PrimitiveType primitive = schema::PrimitiveType_LeakyReLU, | |||
| schema::ActivationType activation = schema::ActivationType_LEAKY_RELU) | |||
| : PatternProcessPass(name, multigraph), primitive_type(primitive), activation_type(activation) {} | |||
| ~PoolingAActivationFusion() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| @@ -75,7 +75,7 @@ bool ClipConvertActivationPass::Run(const FuncGraphPtr &graph) { | |||
| auto primitive = std::make_unique<schema::PrimitiveT>(); | |||
| MS_ASSERT(primitive != nullptr); | |||
| primitive->value.type = schema::PrimitiveType_Activation; | |||
| auto prim2 = new schema::ActivationT; | |||
| auto prim2 = new (std::nothrow) schema::ActivationT; | |||
| MS_ASSERT(prim2 != nullptr); | |||
| if (min == 0 && max == 6) { | |||
| prim2->type = schema::ActivationType_RELU6; | |||