|
|
|
@@ -83,118 +83,97 @@ bool ScatterArithmeticCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
void ScatterArithmeticCPUKernel<T>::ScatterAdd(T *input, const int *indices, const T *updates) { |
|
|
|
auto task = [this, input, indices, updates](size_t start, size_t end) { |
|
|
|
for (size_t i = start; i < end; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] += updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
for (size_t i = 0; i < indices_size_; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] += updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
}; |
|
|
|
CPUKernelUtils::ParallelFor(task, indices_size_); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
void ScatterArithmeticCPUKernel<T>::ScatterSub(T *input, const int *indices, const T *updates) { |
|
|
|
auto task = [this, input, indices, updates](size_t start, size_t end) { |
|
|
|
for (size_t i = start; i < end; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] -= updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
for (size_t i = 0; i < indices_size_; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] -= updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
}; |
|
|
|
CPUKernelUtils::ParallelFor(task, indices_size_); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
void ScatterArithmeticCPUKernel<T>::ScatterMul(T *input, const int *indices, const T *updates) { |
|
|
|
auto task = [this, input, indices, updates](size_t start, size_t end) { |
|
|
|
for (size_t i = start; i < end; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] *= updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
for (size_t i = 0; i < indices_size_; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] *= updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
}; |
|
|
|
CPUKernelUtils::ParallelFor(task, indices_size_); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
void ScatterArithmeticCPUKernel<T>::ScatterDiv(T *input, const int *indices, const T *updates) { |
|
|
|
auto task = [this, input, indices, updates](size_t start, size_t end) { |
|
|
|
for (size_t i = start; i < end; i++) { |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
auto dividend = input[indices[i] * inner_size_ + j]; |
|
|
|
auto divisor = updates[i * inner_size_ + j]; |
|
|
|
if (divisor == 0) { |
|
|
|
if (dividend == 0) { |
|
|
|
input[indices[i] * inner_size_ + j] = std::numeric_limits<T>::quiet_NaN(); |
|
|
|
continue; |
|
|
|
} |
|
|
|
if (std::numeric_limits<T>::has_infinity) { |
|
|
|
input[indices[i] * inner_size_ + j] = |
|
|
|
dividend > 0 ? std::numeric_limits<T>::infinity() : -std::numeric_limits<T>::infinity(); |
|
|
|
} else { |
|
|
|
input[indices[i] * inner_size_ + j] = |
|
|
|
dividend > 0 ? std::numeric_limits<T>::max() : std::numeric_limits<T>::min(); |
|
|
|
} |
|
|
|
for (size_t i = 0; i < indices_size_; i++) { |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
auto dividend = input[indices[i] * inner_size_ + j]; |
|
|
|
auto divisor = updates[i * inner_size_ + j]; |
|
|
|
if (divisor == 0) { |
|
|
|
if (dividend == 0) { |
|
|
|
input[indices[i] * inner_size_ + j] = std::numeric_limits<T>::quiet_NaN(); |
|
|
|
continue; |
|
|
|
} |
|
|
|
input[indices[i] * inner_size_ + j] = dividend / divisor; |
|
|
|
if (std::numeric_limits<T>::has_infinity) { |
|
|
|
input[indices[i] * inner_size_ + j] = |
|
|
|
dividend > 0 ? std::numeric_limits<T>::infinity() : -std::numeric_limits<T>::infinity(); |
|
|
|
} else { |
|
|
|
input[indices[i] * inner_size_ + j] = |
|
|
|
dividend > 0 ? std::numeric_limits<T>::max() : std::numeric_limits<T>::min(); |
|
|
|
} |
|
|
|
continue; |
|
|
|
} |
|
|
|
input[indices[i] * inner_size_ + j] = dividend / divisor; |
|
|
|
} |
|
|
|
}; |
|
|
|
CPUKernelUtils::ParallelFor(task, indices_size_); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
void ScatterArithmeticCPUKernel<T>::ScatterMax(T *input, const int *indices, const T *updates) { |
|
|
|
auto task = [this, input, indices, updates](size_t start, size_t end) { |
|
|
|
for (size_t i = start; i < end; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] = input[base_index_input + j] > updates[base_index_updates + j] |
|
|
|
? input[base_index_input + j] |
|
|
|
: updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
for (size_t i = 0; i < indices_size_; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] = input[base_index_input + j] > updates[base_index_updates + j] |
|
|
|
? input[base_index_input + j] |
|
|
|
: updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
}; |
|
|
|
CPUKernelUtils::ParallelFor(task, indices_size_); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
void ScatterArithmeticCPUKernel<T>::ScatterMin(T *input, const int *indices, const T *updates) { |
|
|
|
auto task = [this, input, indices, updates](size_t start, size_t end) { |
|
|
|
for (size_t i = start; i < end; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] = input[base_index_input + j] < updates[base_index_updates + j] |
|
|
|
? input[base_index_input + j] |
|
|
|
: updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
for (size_t i = 0; i < indices_size_; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] = input[base_index_input + j] < updates[base_index_updates + j] |
|
|
|
? input[base_index_input + j] |
|
|
|
: updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
}; |
|
|
|
CPUKernelUtils::ParallelFor(task, indices_size_); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
void ScatterArithmeticCPUKernel<T>::ScatterUpdate(T *input, const int *indices, const T *updates) { |
|
|
|
auto task = [this, input, indices, updates](size_t start, size_t end) { |
|
|
|
for (size_t i = start; i < end; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] = updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
for (size_t i = 0; i < indices_size_; i++) { |
|
|
|
auto base_index_updates = i * inner_size_; |
|
|
|
auto base_index_input = indices[i] * inner_size_; |
|
|
|
for (size_t j = 0; j < inner_size_; j++) { |
|
|
|
input[base_index_input + j] = updates[base_index_updates + j]; |
|
|
|
} |
|
|
|
}; |
|
|
|
CPUKernelUtils::ParallelFor(task, indices_size_); |
|
|
|
} |
|
|
|
} |
|
|
|
} // namespace kernel |
|
|
|
} // namespace mindspore |