Merge pull request !7850 from chengxb7532/mastertags/v1.1.0
| @@ -31,6 +31,8 @@ SSD discretizes the output space of bounding boxes into a set of default boxes o | |||
| The SSD approach is based on a feed-forward convolutional network that produces a fixed-size collection of bounding boxes and scores for the presence of object class instances in those boxes, followed by a non-maximum suppression step to produce the final detections. The early network layers are based on a standard architecture used for high quality image classification, which is called the base network. Then add auxiliary structure to the network to produce detections. | |||
| # [Dataset](#contents) | |||
| Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below. | |||
| Dataset used: [COCO2017](<http://images.cocodataset.org/>) | |||
| - Dataset size:19G | |||
| @@ -299,14 +301,14 @@ mAP: 0.2244936111705981 | |||
| | -------------------------- | -------------------------------------------------------------| -------------------------------------------------------------| | |||
| | Model Version | SSD V1 | SSD V1 | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | NV SMX2 V100-16G | | |||
| | uploaded Date | 06/01/2020 (month/day/year) | 09/24/2020 (month/day/year) | | |||
| | MindSpore Version | 0.3.0-alpha | 1.0.0 | | |||
| | uploaded Date | 09/15/2020 (month/day/year) | 09/24/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | 1.0.0 | | |||
| | Dataset | COCO2017 | COCO2017 | | |||
| | Training Parameters | epoch = 500, batch_size = 32 | epoch = 800, batch_size = 32 | | |||
| | Optimizer | Momentum | Momentum | | |||
| | Loss Function | Sigmoid Cross Entropy,SmoothL1Loss | Sigmoid Cross Entropy,SmoothL1Loss | | |||
| | Speed | 8pcs: 90ms/step | 8pcs: 121ms/step | | |||
| | Total time | 8pcs: 4.81hours | 8pcs: 12.31hours | | |||
| | Total time | 8pcs: 4.81hours | 8pcs: 12.31hours | | |||
| | Parameters (M) | 34 | 34 | | |||
| | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/ssd | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/ssd | | |||
| @@ -317,8 +319,8 @@ mAP: 0.2244936111705981 | |||
| | ------------------- | ----------------------------| ----------------------------| | |||
| | Model Version | SSD V1 | SSD V1 | | |||
| | Resource | Ascend 910 | GPU | | |||
| | Uploaded Date | 06/01/2020 (month/day/year) | 09/24/2020 (month/day/year) | | |||
| | MindSpore Version | 0.3.0-alpha | 1.0.0 | | |||
| | Uploaded Date | 09/15/2020 (month/day/year) | 09/24/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | 1.0.0 | | |||
| | Dataset | COCO2017 | COCO2017 | | |||
| | batch_size | 1 | 1 | | |||
| | outputs | mAP | mAP | | |||
| @@ -40,6 +40,7 @@ YOLOv3 use DarkNet53 for performing feature extraction, which is a hybrid approa | |||
| # [Dataset](#contents) | |||
| Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below. | |||
| Dataset used: [COCO2014](https://cocodataset.org/#download) | |||
| @@ -307,8 +308,8 @@ The above python command will run in the background. You can view the results th | |||
| | -------------------------- | ----------------------------------------------------------- |------------------------------------------------------------ | | |||
| | Model Version | YOLOv3 |YOLOv3 | | |||
| | Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G | NV SMX2 V100-16G; CPU 2.10GHz, 96cores; Memory, 251G | | |||
| | uploaded Date | 06/31/2020 (month/day/year) | 09/02/2020 (month/day/year) | | |||
| | MindSpore Version | 0.5.0-alpha | 0.7.0 | | |||
| | uploaded Date | 09/15/2020 (month/day/year) | 09/02/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | 1.0.0 | | |||
| | Dataset | COCO2014 | COCO2014 | | |||
| | Training Parameters | epoch=320, batch_size=32, lr=0.001, momentum=0.9 | epoch=320, batch_size=32, lr=0.001, momentum=0.9 | | |||
| | Optimizer | Momentum | Momentum | | |||
| @@ -328,8 +329,8 @@ The above python command will run in the background. You can view the results th | |||
| | ------------------- | --------------------------- |------------------------------| | |||
| | Model Version | YOLOv3 | YOLOv3 | | |||
| | Resource | Ascend 910 | NV SMX2 V100-16G | | |||
| | Uploaded Date | 06/31/2020 (month/day/year) | 08/20/2020 (month/day/year) | | |||
| | MindSpore Version | 0.5.0-alpha | 0.7.0 | | |||
| | Uploaded Date | 09/15/2020 (month/day/year) | 08/20/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | 1.0.0 | | |||
| | Dataset | COCO2014, 40,504 images | COCO2014, 40,504 images | | |||
| | batch_size | 1 | 1 | | |||
| | outputs | mAP | mAP | | |||
| @@ -42,6 +42,7 @@ YOLOv3 use DarkNet53 for performing feature extraction, which is a hybrid approa | |||
| # [Dataset](#contents) | |||
| Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below. | |||
| Dataset used: [COCO2014](https://cocodataset.org/#download) | |||
| @@ -276,8 +277,8 @@ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.558 | |||
| | -------------------------- | ---------------------------------------------------------------------------------------------- | | |||
| | Model Version | YOLOv3_Darknet53_Quant V1 | | |||
| | Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G | | |||
| | uploaded Date | 06/31/2020 (month/day/year) | | |||
| | MindSpore Version | 0.6.0-alpha | | |||
| | uploaded Date | 09/15/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | COCO2014 | | |||
| | Training Parameters | epoch=135, batch_size=16, lr=0.012, momentum=0.9 | | |||
| | Optimizer | Momentum | | |||
| @@ -297,8 +298,8 @@ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.558 | |||
| | ------------------- | --------------------------- | | |||
| | Model Version | YOLOv3_Darknet53_Quant V1 | | |||
| | Resource | Ascend 910 | | |||
| | Uploaded Date | 06/31/2020 (month/day/year) | | |||
| | MindSpore Version | 0.6.0-alpha | | |||
| | Uploaded Date | 09/15/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | COCO2014, 40,504 images | | |||
| | batch_size | 1 | | |||
| | outputs | mAP | | |||
| @@ -34,6 +34,7 @@ And we use ResNet18 as the backbone of YOLOv3_ResNet18. The architecture of ResN | |||
| # [Dataset](#contents) | |||
| Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below. | |||
| Dataset used: [COCO2017](<http://images.cocodataset.org/>) | |||
| @@ -200,35 +201,35 @@ Note the precision and recall values are results of two-classification(person an | |||
| ### Evaluation Performance | |||
| | Parameters | Ascend | | |||
| | Parameters | Ascend | | |||
| | -------------------------- | ----------------------------------------------------------- | | |||
| | Model Version | YOLOv3_Resnet18 V1 | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||
| | uploaded Date | 06/01/2020 (month/day/year) | | |||
| | MindSpore Version | 0.2.0-alpha | | |||
| | Dataset | COCO2017 | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G | | |||
| | uploaded Date | 09/15/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | COCO2017 | | |||
| | Training Parameters | epoch = 150, batch_size = 32, lr = 0.001 | | |||
| | Optimizer | Adam | | |||
| | Optimizer | Adam | | |||
| | Loss Function | Sigmoid Cross Entropy | | |||
| | outputs | probability | | |||
| | Speed | 1pc: 120 ms/step; 8pcs: 160 ms/step | | |||
| | Total time | 1pc: 150 mins; 8pcs: 70 mins | | |||
| | Parameters (M) | 189 | | |||
| | outputs | probability | | |||
| | Speed | 1pc: 120 ms/step; 8pcs: 160 ms/step | | |||
| | Total time | 1pc: 150 mins; 8pcs: 70 mins | | |||
| | Parameters (M) | 189 | | |||
| | Scripts | [yolov3_resnet18 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18) | [yolov3_resnet18 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18) | | |||
| ### Inference Performance | |||
| | Parameters | Ascend | | |||
| | Parameters | Ascend | | |||
| | ------------------- | ----------------------------------------------- | | |||
| | Model Version | YOLOv3_Resnet18 V1 | | |||
| | Model Version | YOLOv3_Resnet18 V1 | | |||
| | Resource | Ascend 910 | | |||
| | Uploaded Date | 06/01/2020 (month/day/year) | | |||
| | MindSpore Version | 0.2.0-alpha | | |||
| | Uploaded Date | 09/15/2020 (month/day/year) | | |||
| | MindSpore Version | 1.0.0 | | |||
| | Dataset | COCO2017 | | |||
| | batch_size | 1 | | |||
| | outputs | presion and recall | | |||
| | Accuracy | class 0: 88.18%/66.00%; class 1: 85.34%/79.13% | | |||
| | Accuracy | class 0: 88.18%/66.00%; class 1: 85.34%/79.13% | | |||
| # [Description of Random Situation](#contents) | |||