|
|
|
@@ -0,0 +1,136 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
import mindspore as ms |
|
|
|
from mindspore import context, Tensor, Parameter |
|
|
|
from mindspore.nn import Cell |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore.ops import operations as P, functional as F |
|
|
|
from mindspore.common.initializer import initializer |
|
|
|
import mindspore.common.dtype as mstype |
|
|
|
from mindspore.common.api import _executor |
|
|
|
from tests.dataset_mock import MindData |
|
|
|
|
|
|
|
|
|
|
|
class Dataset(MindData): |
|
|
|
def __init__(self, predict, label, length=3): |
|
|
|
super(Dataset, self).__init__(size=length) |
|
|
|
self.predict = predict |
|
|
|
self.label = label |
|
|
|
self.index = 0 |
|
|
|
self.length = length |
|
|
|
|
|
|
|
def __iter__(self): |
|
|
|
return self |
|
|
|
|
|
|
|
def __next__(self): |
|
|
|
if self.index >= self.length: |
|
|
|
raise StopIteration |
|
|
|
self.index += 1 |
|
|
|
return self.predict, self.label |
|
|
|
|
|
|
|
def reset(self): |
|
|
|
self.index = 0 |
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm(nn.Cell): |
|
|
|
def __init__(self, normalized_shape, eps=1e-5): |
|
|
|
super(LayerNorm, self).__init__() |
|
|
|
self.gamma = Parameter(initializer('ones', normalized_shape), name="gamma") |
|
|
|
self.beta = Parameter(initializer('zeros', normalized_shape), name="beta") |
|
|
|
self.mean = P.ReduceMean(keep_dims=True) |
|
|
|
self.eps = eps |
|
|
|
self.sub = P.Sub() |
|
|
|
self.add = P.TensorAdd() |
|
|
|
self.mul = P.Mul() |
|
|
|
self.div = P.RealDiv() |
|
|
|
|
|
|
|
self.reshape = P.Reshape() |
|
|
|
self.shape = P.Shape() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x_origin_shape = self.shape(x) |
|
|
|
x_target_shape = x_origin_shape[:-1] |
|
|
|
x_shape = x_origin_shape + (1,) |
|
|
|
x = self.reshape(x, x_shape) |
|
|
|
x = self.reshape(x, x_target_shape) |
|
|
|
mean = self.mean(x, -1) |
|
|
|
variance = self.mean(F.square(self.sub(x, mean))) |
|
|
|
output = self.div(self.sub(x, mean), F.sqrt(self.add(variance, self.eps))) |
|
|
|
rescaled_output = self.add(self.mul(output, self.gamma), self.beta) |
|
|
|
output_shape = self.shape(rescaled_output) + (1,) |
|
|
|
rescaled_output = self.reshape(rescaled_output, output_shape) |
|
|
|
return rescaled_output |
|
|
|
|
|
|
|
|
|
|
|
class SubNet(Cell): |
|
|
|
def __init__(self, index): |
|
|
|
super().__init__() |
|
|
|
self.relu = P.ReLU() |
|
|
|
self.layernorm1 = LayerNorm((128,)).to_float(mstype.float32) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.layernorm1(x) |
|
|
|
out = self.relu(x) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class Net(Cell): |
|
|
|
def __init__(self, mul_weight, num_layers, strategy1=None, strategy2=None): |
|
|
|
super().__init__() |
|
|
|
self.mul = P.Mul().shard(strategy1) |
|
|
|
self.neg = P.Neg().shard(strategy2) |
|
|
|
self.mul_weight = Parameter(mul_weight, "w1") |
|
|
|
self.num_layers = num_layers |
|
|
|
self.layers = nn.CellList() |
|
|
|
for i in range(num_layers): |
|
|
|
self.layers.append(SubNet(i)) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
for i in range(self.num_layers): |
|
|
|
x = self.layers[i](x) |
|
|
|
out = self.mul(x, self.mul_weight) |
|
|
|
out = self.neg(out) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class Full(Cell): |
|
|
|
def __init__(self, mul_weight, num_layers, strategy1=None, strategy2=None): |
|
|
|
super().__init__() |
|
|
|
self.network = Net(mul_weight, num_layers, strategy1, strategy2) |
|
|
|
self.relu = P.ReLU() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
out = self.network(x) |
|
|
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
_x = Tensor(np.ones([512, 128, 1]), dtype=ms.float32) |
|
|
|
_b = Tensor(np.ones([32]), dtype=ms.int32) |
|
|
|
_w1 = Tensor(np.ones([512, 128, 1]), dtype=ms.float32) |
|
|
|
|
|
|
|
|
|
|
|
def test_auto_parallel(): |
|
|
|
context.set_context(save_graphs=True) |
|
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) |
|
|
|
net = Full(_w1, 3) |
|
|
|
net.set_auto_parallel() |
|
|
|
net.set_train() |
|
|
|
_executor.compile(net, _x, phase='train') |
|
|
|
num_ops = _executor._get_num_parallel_ops(net) |
|
|
|
expected_num = 16 |
|
|
|
assert num_ops == expected_num |