Merge pull request !5132 from byweng/mastertags/v1.0.0
| @@ -21,13 +21,13 @@ The objective of MDP is to integrate deep learning with Bayesian learning. On th | |||
| **Layer 1-2: Probabilistic inference algorithms** | |||
| - SVI([mindspore.nn.probability.dpn](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/dpn)): A unified interface for stochastic variational inference. | |||
| - SVI([mindspore.nn.probability.infer.variational](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/infer/variational)): A unified interface for stochastic variational inference. | |||
| - MC: Algorithms for approximating integrals via sampling. | |||
| **Layer 2: Deep Probabilistic Programming (DPP) aims to provide composable BNN modules** | |||
| - Layers([mindspore.nn.probability.bnn_layers](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/bnn_layers)): BNN layers, which are used to construct BNN. | |||
| - Bnn: A bunch of BNN models that allow to be integrated into DNN; | |||
| - Dpn([mindspore.nn.probability.dpn](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/dpn)): A bunch of BNN models that allow to be integrated into DNN; | |||
| - Transform([mindspore.nn.probability.transforms](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/transforms)): Interfaces for the transformation between BNN and DNN; | |||
| - Context: context managers for models and layers. | |||
| @@ -14,6 +14,7 @@ | |||
| # ============================================================================ | |||
| """Convolutional variational layers.""" | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore._checkparam import twice | |||
| from ...layer.conv import _Conv | |||
| from ...cell import Cell | |||
| @@ -79,35 +80,45 @@ class _ConvVariational(_Conv): | |||
| self.weight.requires_grad = False | |||
| if isinstance(weight_prior_fn, Cell): | |||
| if weight_prior_fn.__class__.__name__ != 'NormalPrior': | |||
| raise TypeError('The type of `weight_prior_fn` should be `NormalPrior`') | |||
| self.weight_prior = weight_prior_fn | |||
| else: | |||
| if weight_prior_fn.__name__ != 'NormalPrior': | |||
| raise TypeError('The type of `weight_prior_fn` should be `NormalPrior`') | |||
| self.weight_prior = weight_prior_fn() | |||
| for prior_name, prior_dist in self.weight_prior.name_cells().items(): | |||
| if prior_name != 'normal': | |||
| raise TypeError("The type of distribution of `weight_prior_fn` should be `normal`") | |||
| if not (isinstance(getattr(prior_dist, '_mean_value'), Tensor) and | |||
| isinstance(getattr(prior_dist, '_sd_value'), Tensor)): | |||
| raise TypeError("The input form of `weight_prior_fn` is incorrect") | |||
| try: | |||
| self.weight_posterior = weight_posterior_fn(shape=self.shape, name='bnn_weight') | |||
| except TypeError: | |||
| raise TypeError('The type of `weight_posterior_fn` should be `NormalPosterior`') | |||
| raise TypeError('The input form of `weight_posterior_fn` is incorrect') | |||
| for posterior_name, _ in self.weight_posterior.name_cells().items(): | |||
| if posterior_name != 'normal': | |||
| raise TypeError("The type of distribution of `weight_posterior_fn` should be `normal`") | |||
| if self.has_bias: | |||
| self.bias.requires_grad = False | |||
| if isinstance(bias_prior_fn, Cell): | |||
| if bias_prior_fn.__class__.__name__ != 'NormalPrior': | |||
| raise TypeError('The type of `bias_prior_fn` should be `NormalPrior`') | |||
| self.bias_prior = bias_prior_fn | |||
| else: | |||
| if bias_prior_fn.__name__ != 'NormalPrior': | |||
| raise TypeError('The type of `bias_prior_fn` should be `NormalPrior`') | |||
| self.bias_prior = bias_prior_fn() | |||
| for prior_name, prior_dist in self.bias_prior.name_cells().items(): | |||
| if prior_name != 'normal': | |||
| raise TypeError("The type of distribution of `bias_prior_fn` should be `normal`") | |||
| if not (isinstance(getattr(prior_dist, '_mean_value'), Tensor) and | |||
| isinstance(getattr(prior_dist, '_sd_value'), Tensor)): | |||
| raise TypeError("The input form of `bias_prior_fn` is incorrect") | |||
| try: | |||
| self.bias_posterior = bias_posterior_fn(shape=[self.out_channels], name='bnn_bias') | |||
| except TypeError: | |||
| raise TypeError('The type of `bias_posterior_fn` should be `NormalPosterior`') | |||
| for posterior_name, _ in self.bias_posterior.name_cells().items(): | |||
| if posterior_name != 'normal': | |||
| raise TypeError("The type of distribution of `bias_posterior_fn` should be `normal`") | |||
| # mindspore operations | |||
| self.bias_add = P.BiasAdd() | |||
| @@ -221,16 +232,16 @@ class ConvReparam(_ConvVariational): | |||
| normal distribution). The current version only supports NormalPrior. | |||
| weight_posterior_fn: posterior distribution for sampling weight. | |||
| It should be a function handle which returns a mindspore | |||
| distribution instance. Default: NormalPosterior. The current | |||
| version only supports NormalPosterior. | |||
| distribution instance. Default: lambda name, shape: NormalPosterior(name=name, shape=shape). | |||
| The current version only supports normal distribution. | |||
| bias_prior_fn: prior distribution for bias vector. It should return | |||
| a mindspore distribution. Default: NormalPrior(which creates an | |||
| instance of standard normal distribution). The current version | |||
| only supports NormalPrior. | |||
| only supports normal distribution. | |||
| bias_posterior_fn: posterior distribution for sampling bias vector. | |||
| It should be a function handle which returns a mindspore | |||
| distribution instance. Default: NormalPosterior. The current | |||
| version only supports NormalPosterior. | |||
| distribution instance. Default: lambda name, shape: NormalPosterior(name=name, shape=shape). | |||
| The current version only supports normal distribution. | |||
| Inputs: | |||
| - **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`. | |||
| @@ -239,7 +250,6 @@ class ConvReparam(_ConvVariational): | |||
| Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. | |||
| Examples: | |||
| Examples: | |||
| >>> net = ConvReparam(120, 240, 4, has_bias=False) | |||
| >>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32) | |||
| >>> net(input).shape | |||
| @@ -14,6 +14,7 @@ | |||
| # ============================================================================ | |||
| """dense_variational""" | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore._checkparam import check_int_positive, check_bool | |||
| from ...cell import Cell | |||
| from ...layer.activation import get_activation | |||
| @@ -43,33 +44,43 @@ class _DenseVariational(Cell): | |||
| self.has_bias = check_bool(has_bias) | |||
| if isinstance(weight_prior_fn, Cell): | |||
| if weight_prior_fn.__class__.__name__ != 'NormalPrior': | |||
| raise TypeError('The type of `weight_prior_fn` should be `NormalPrior`') | |||
| self.weight_prior = weight_prior_fn | |||
| else: | |||
| if weight_prior_fn.__name__ != 'NormalPrior': | |||
| raise TypeError('The type of `weight_prior_fn` should be `NormalPrior`') | |||
| self.weight_prior = weight_prior_fn() | |||
| for prior_name, prior_dist in self.weight_prior.name_cells().items(): | |||
| if prior_name != 'normal': | |||
| raise TypeError("The type of distribution of `weight_prior_fn` should be `normal`") | |||
| if not (isinstance(getattr(prior_dist, '_mean_value'), Tensor) and | |||
| isinstance(getattr(prior_dist, '_sd_value'), Tensor)): | |||
| raise TypeError("The input form of `weight_prior_fn` is incorrect") | |||
| try: | |||
| self.weight_posterior = weight_posterior_fn(shape=[self.out_channels, self.in_channels], name='bnn_weight') | |||
| except TypeError: | |||
| raise TypeError('The type of `weight_posterior_fn` should be `NormalPosterior`') | |||
| for posterior_name, _ in self.weight_posterior.name_cells().items(): | |||
| if posterior_name != 'normal': | |||
| raise TypeError("The type of distribution of `weight_posterior_fn` should be `normal`") | |||
| if self.has_bias: | |||
| if isinstance(bias_prior_fn, Cell): | |||
| if bias_prior_fn.__class__.__name__ != 'NormalPrior': | |||
| raise TypeError('The type of `bias_prior_fn` should be `NormalPrior`') | |||
| self.bias_prior = bias_prior_fn | |||
| else: | |||
| if bias_prior_fn.__name__ != 'NormalPrior': | |||
| raise TypeError('The type of `bias_prior_fn` should be `NormalPrior`') | |||
| self.bias_prior = bias_prior_fn() | |||
| for prior_name, prior_dist in self.bias_prior.name_cells().items(): | |||
| if prior_name != 'normal': | |||
| raise TypeError("The type of distribution of `bias_prior_fn` should be `normal`") | |||
| if not (isinstance(getattr(prior_dist, '_mean_value'), Tensor) and | |||
| isinstance(getattr(prior_dist, '_sd_value'), Tensor)): | |||
| raise TypeError("The input form of `bias_prior_fn` is incorrect") | |||
| try: | |||
| self.bias_posterior = bias_posterior_fn(shape=[self.out_channels], name='bnn_bias') | |||
| except TypeError: | |||
| raise TypeError('The type of `bias_posterior_fn` should be `NormalPosterior`') | |||
| for posterior_name, _ in self.bias_posterior.name_cells().items(): | |||
| if posterior_name != 'normal': | |||
| raise TypeError("The type of distribution of `bias_posterior_fn` should be `normal`") | |||
| self.activation = activation | |||
| if not self.activation: | |||
| @@ -160,16 +171,16 @@ class DenseReparam(_DenseVariational): | |||
| normal distribution). The current version only supports NormalPrior. | |||
| weight_posterior_fn: posterior distribution for sampling weight. | |||
| It should be a function handle which returns a mindspore | |||
| distribution instance. Default: NormalPosterior. The current | |||
| version only supports NormalPosterior. | |||
| distribution instance. Default: lambda name, shape: NormalPosterior(name=name, shape=shape). | |||
| The current version only supports normal distribution. | |||
| bias_prior_fn: prior distribution for bias vector. It should return | |||
| a mindspore distribution. Default: NormalPrior(which creates an | |||
| instance of standard normal distribution). The current version | |||
| only supports NormalPrior. | |||
| bias_posterior_fn: posterior distribution for sampling bias vector. | |||
| It should be a function handle which returns a mindspore | |||
| distribution instance. Default: NormalPosterior. The current | |||
| version only supports NormalPosterior. | |||
| distribution instance. Default: lambda name, shape: NormalPosterior(name=name, shape=shape). | |||
| The current version only supports normal distribution. | |||
| Inputs: | |||
| - **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`. | |||
| @@ -180,7 +191,8 @@ class DenseReparam(_DenseVariational): | |||
| Examples: | |||
| >>> net = DenseReparam(3, 4) | |||
| >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32) | |||
| >>> net(input) | |||
| >>> net(input).shape | |||
| (2, 4) | |||
| """ | |||
| def __init__( | |||
| @@ -31,8 +31,8 @@ class NormalPrior(Cell): | |||
| Args: | |||
| dtype (:class:`mindspore.dtype`): The argument is used to define the data type of the output tensor. | |||
| Default: mindspore.float32. | |||
| mean (int, float): Mean of normal distribution. | |||
| std (int, float): Standard deviation of normal distribution. | |||
| mean (int, float): Mean of normal distribution. Default: 0. | |||
| std (int, float): Standard deviation of normal distribution. Default: 0.1. | |||
| Returns: | |||
| Cell, a normal distribution. | |||
| @@ -99,7 +99,7 @@ class ConditionalVAE(Cell): | |||
| Randomly sample from latent space to generate sample. | |||
| Args: | |||
| sample_y (Tensor): Define the label of sample, int tensor, the shape is (generate_nums, ). | |||
| sample_y (Tensor): Define the label of sample. Tensor of shape (generate_nums, ) and type mindspore.int32. | |||
| generate_nums (int): The number of samples to generate. | |||
| shape(tuple): The shape of sample, it should be (generate_nums, C, H, W) or (-1, C, H, W). | |||
| @@ -68,6 +68,10 @@ class UncertaintyEvaluation: | |||
| >>> save_model=False) | |||
| >>> epistemic_uncertainty = evaluation.eval_epistemic_uncertainty(eval_data) | |||
| >>> aleatoric_uncertainty = evaluation.eval_aleatoric_uncertainty(eval_data) | |||
| >>> epistemic_uncertainty.shape | |||
| (32, 10) | |||
| >>> aleatoric_uncertainty.shape | |||
| (32,) | |||
| """ | |||
| def __init__(self, model, train_dataset, task_type, num_classes=None, epochs=1, | |||
| @@ -31,8 +31,8 @@ class TransformToBNN: | |||
| Args: | |||
| trainable_dnn (Cell): A trainable DNN model (backbone) wrapped by TrainOneStepCell. | |||
| dnn_factor ((int, float): The coefficient of backbone's loss, which is computed by loss function. | |||
| bnn_factor (int, float): The coefficient of kl loss, which is kl divergence of Bayesian layer. | |||
| dnn_factor ((int, float): The coefficient of backbone's loss, which is computed by loss function. Default: 1. | |||
| bnn_factor (int, float): The coefficient of kl loss, which is kl divergence of Bayesian layer. Default: 1. | |||
| Examples: | |||
| >>> class Net(nn.Cell): | |||
| @@ -93,15 +93,15 @@ class TransformToBNN: | |||
| Transform the whole DNN model to BNN model, and wrap BNN model by TrainOneStepCell. | |||
| Args: | |||
| get_dense_args (:class:`function`): The arguments gotten from the DNN full connection layer. Default: lambda dp: | |||
| get_dense_args: The arguments gotten from the DNN full connection layer. Default: lambda dp: | |||
| {"in_channels": dp.in_channels, "out_channels": dp.out_channels, "has_bias": dp.has_bias}. | |||
| get_conv_args (:class:`function`): The arguments gotten from the DNN convolutional layer. Default: lambda dp: | |||
| get_conv_args: The arguments gotten from the DNN convolutional layer. Default: lambda dp: | |||
| {"in_channels": dp.in_channels, "out_channels": dp.out_channels, "pad_mode": dp.pad_mode, | |||
| "kernel_size": dp.kernel_size, "stride": dp.stride, "has_bias": dp.has_bias}. | |||
| add_dense_args (dict): The new arguments added to BNN full connection layer. Note that the arguments in | |||
| `add_dense_args` should not duplicate arguments in `get_dense_args`. Default: {}. | |||
| `add_dense_args` should not duplicate arguments in `get_dense_args`. Default: None. | |||
| add_conv_args (dict): The new arguments added to BNN convolutional layer. Note that the arguments in | |||
| `add_conv_args` should not duplicate arguments in `get_conv_args`. Default: {}. | |||
| `add_conv_args` should not duplicate arguments in `get_conv_args`. Default: None. | |||
| Returns: | |||
| Cell, a trainable BNN model wrapped by TrainOneStepCell. | |||
| @@ -142,7 +142,7 @@ class TransformToBNN: | |||
| nn.Dense, nn.Conv2d. | |||
| bnn_layer_type (Cell): The type of BNN layer to be transformed to. The optional values are | |||
| DenseReparam, ConvReparam. | |||
| get_args (:class:`function`): The arguments gotten from the DNN layer. Default: None. | |||
| get_args: The arguments gotten from the DNN layer. Default: None. | |||
| add_args (dict): The new arguments added to BNN layer. Note that the arguments in `add_args` should not | |||
| duplicate arguments in `get_args`. Default: None. | |||