|
|
|
@@ -55,10 +55,10 @@ config_ascend_quant = ed({ |
|
|
|
dataset_path = "/home/workspace/mindspore_dataset/cifar-10-batches-bin/" |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level1 |
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
@pytest.mark.env_single |
|
|
|
def test_mobilenetv2_quant(): |
|
|
|
set_seed(1) |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
@@ -111,9 +111,12 @@ def test_mobilenetv2_quant(): |
|
|
|
dataset_sink_mode=False) |
|
|
|
print("============== End Training ==============") |
|
|
|
|
|
|
|
export_time_used = 700 |
|
|
|
train_time = monitor.step_mseconds |
|
|
|
print('train_time_used:{}'.format(train_time)) |
|
|
|
assert train_time < export_time_used |
|
|
|
expect_avg_step_loss = 2.32 |
|
|
|
avg_step_loss = np.mean(np.array(monitor.losses)) |
|
|
|
|
|
|
|
print("average step loss:{}".format(avg_step_loss)) |
|
|
|
assert avg_step_loss < expect_avg_step_loss |
|
|
|
|
|
|
|
|