|
|
|
@@ -0,0 +1,70 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""training utils""" |
|
|
|
import math |
|
|
|
import numpy as np |
|
|
|
from mindspore import dtype as mstype |
|
|
|
from mindspore import Tensor |
|
|
|
|
|
|
|
|
|
|
|
def get_lr(cfg, dataset_size): |
|
|
|
if cfg.cell == "lstm": |
|
|
|
lr = get_lr_lstm(0, cfg.lstm_lr_init, cfg.lstm_lr_end, cfg.lstm_lr_max, cfg.lstm_lr_warm_up_epochs, |
|
|
|
cfg.lstm_num_epochs, dataset_size, cfg.lstm_lr_adjust_epochs) |
|
|
|
lr_ret = Tensor(lr, mstype.float32) |
|
|
|
else: |
|
|
|
lr_ret = cfg.lr |
|
|
|
return lr_ret |
|
|
|
|
|
|
|
|
|
|
|
def get_lr_lstm(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_adjust_epoch): |
|
|
|
""" |
|
|
|
generate learning rate array |
|
|
|
|
|
|
|
Args: |
|
|
|
global_step(int): total steps of the training |
|
|
|
lr_init(float): init learning rate |
|
|
|
lr_end(float): end learning rate |
|
|
|
lr_max(float): max learning rate |
|
|
|
warmup_epochs(float): number of warmup epochs |
|
|
|
total_epochs(int): total epoch of training |
|
|
|
steps_per_epoch(int): steps of one epoch |
|
|
|
lr_adjust_epoch(int): lr adjust in lr_adjust_epoch, after that, the lr is lr_end |
|
|
|
|
|
|
|
Returns: |
|
|
|
np.array, learning rate array |
|
|
|
""" |
|
|
|
lr_each_step = [] |
|
|
|
total_steps = steps_per_epoch * total_epochs |
|
|
|
warmup_steps = steps_per_epoch * warmup_epochs |
|
|
|
adjust_steps = lr_adjust_epoch * steps_per_epoch |
|
|
|
for i in range(total_steps): |
|
|
|
if i < warmup_steps: |
|
|
|
lr = lr_init + (lr_max - lr_init) * i / warmup_steps |
|
|
|
elif i < adjust_steps: |
|
|
|
lr = lr_end + \ |
|
|
|
(lr_max - lr_end) * \ |
|
|
|
(1. + math.cos(math.pi * (i - warmup_steps) / (adjust_steps - warmup_steps))) / 2. |
|
|
|
else: |
|
|
|
lr = lr_end |
|
|
|
if lr < 0.0: |
|
|
|
lr = 0.0 |
|
|
|
lr_each_step.append(lr) |
|
|
|
|
|
|
|
current_step = global_step |
|
|
|
lr_each_step = np.array(lr_each_step).astype(np.float32) |
|
|
|
learning_rate = lr_each_step[current_step:] |
|
|
|
|
|
|
|
return learning_rate |