Browse Source

Remove commented code

pull/14910/head
Eric 4 years ago
parent
commit
c4d7aa76bf
3 changed files with 0 additions and 5 deletions
  1. +0
    -2
      mindspore/dataset/engine/datasets.py
  2. +0
    -1
      mindspore/lite/minddata/example/testlenet.cpp
  3. +0
    -2
      model_zoo/official/cv/cnn_direction_model/src/cnn_direction_model.py

+ 0
- 2
mindspore/dataset/engine/datasets.py View File

@@ -1300,8 +1300,6 @@ class Dataset:
file_type (str, optional): Dataset format (default='mindrecord').

"""
# todo(CRC) warning("Used shuffle, repeat, batch before save operator.")

ir_tree, api_tree = self.create_ir_tree()

runtime_context = cde.PythonRuntimeContext()


+ 0
- 1
mindspore/lite/minddata/example/testlenet.cpp View File

@@ -53,7 +53,6 @@ int main(int argc, char **argv) {
uint64_t i = 0;
while (row.size() != 0) {
i++;
// auto image = row["image"];
iter->GetNextRow(&row);
}



+ 0
- 2
model_zoo/official/cv/cnn_direction_model/src/cnn_direction_model.py View File

@@ -233,9 +233,7 @@ class CNNDirectionModel(nn.Cell):
# 5 previous layers have mp=2. Height and width of the image would become 1/32.
self.avg_pool = nn.AvgPool2d(kernel_size=(int(self.image_h / 32), int(self.image_w / 32)))

# sqrt(6 / (fan_in + fan_out))
scale = math.sqrt(6 / (out_channels[-1] + dense_layers[0]))
# weight_init='glorot_uniform'
self.dense1 = nn.Dense(out_channels[-1], dense_layers[0], weight_init=Uniform(scale=scale), activation='relu')

scale = math.sqrt(6 / (dense_layers[0] + dense_layers[1]))


Loading…
Cancel
Save